Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 017203    DOI: 10.1088/1674-1056/19/1/017203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Characterization of ion-implanted 4H-SiC Schottky barrier diodes

Wang Shou-Guo(王守国)a)c), Zhang Yan(张岩)a), Zhang Yi-Men(张义门)b), and Zhang Yu-Ming(张玉明) b)
a Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen 518055, China; b School of Microelectronics, Xidian University, Xi'an 710071, China; School of Information Science and Technology, Northwest University, Xi'an 710127, China
Abstract  Ion-implantation layers are fabricated by multiple nitrogen ion-implantations (3 times for sample A and 4 times for sample B) into a p-type 4H-SiC epitaxial layer. The implantation depth profiles are calculated by using the Monte Carlo simulator TRIM. The fabrication process and the I--V and C--V characteristics of the lateral Ti/4H-SiC Schottky barrier diodes (SBDs) fabricated on these multiple box-like ion-implantation layers are presented in detail. Measurements of the reverse I--V characteristics demonstrate a low reverse current, which is good enough for many SiC-based devices such as SiC metal--semiconductor field-effect transistors (MESFETs), and SiC static induction transistors (SITs). The parameters of the diodes are extracted from the forward I--V and C--V characteristics. The values of ideality factor n of SBDs for samples A and B are 3.0 and 3.5 respectively, and the values of series resistance $R_{\rm s}$  are 11.9 and 1.0 kΩ respectively. The values of barrier height $\phi _{\rm B}$  of Ti/4H-SiC are 0.95 and 0.72 eV obtained by the I--V method and 1.14 and 0.93 eV obtained by the C--V method for samples A and B respectively. The activation rates for the implanted nitrogen ions of samples A and B are 2% and 4% respectively extracted from C--V testing results.
Keywords:  silicon carbide      ion-implantation      Schottky barrier diodes      barrier height  
Received:  19 March 2009      Revised:  08 May 2009      Accepted manuscript online: 
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
  85.30.Kk (Junction diodes)  
  85.30.Tv (Field effect devices)  

Cite this article: 

Wang Shou-Guo(王守国), Zhang Yan(张岩), Zhang Yi-Men(张义门), and Zhang Yu-Ming(张玉明) Characterization of ion-implanted 4H-SiC Schottky barrier diodes 2010 Chin. Phys. B 19 017203

[1] Ostling M, Lee H S, Domeij M and Zetterling C M 2006 Int. Conf. Mixed Design p34
[2] Watanabe M, Fukushi D, Yano H and Nakajima S 2007 CS Mantech Conf. p187
[3] Onodera K, Nishimura K, Aoyama S and Sugitani S 1999 IEEE Trans. Electron Devices 46 310
[4] Feng M, Scherrer D R, Apostolakis P J and Kruse J W 1996 IEEE Trans. Electron Devices 43 852
[5] Danzilio C 1998 Proc. Conf. GaAs Manufact. Technol. p111
[6] Feng M, Law C L, Eu V and Ito C 1991 Appl. Phys. Lett. 59(19) 1233
[7] Tang H Z, Caruth D and Becher D 1999 IEEE Electron Device Lett. 20 245
[8] Tucker J B, Mitra S, Papanicolaou N and Siripuram A 2002 Diam. Rel. Mater. 11 392
[9] Tucker B, Papanicolaou N, Rao M V and Holland O W 2002 Diam. Rel. Mater. 11 1344
[10] Katakami S, Ogata M, Ono S and Arai M 2007 Mater. Sci. Forum 556--557 803
[11] Saxena V, Su J N and Steckl A J 1999 IEEE Trans. Electron Devices 46 456
[12] Defives D, Noblanc O, Dua C and Brylinski C 1999 IEEE Trans. Electron Devices 46 449
[13] Lundberg N and Ostling M 1993 Appl. Phys. Lett. 63 3069
[14] Bhatnagar P, McLarty K and Baliga B J 1992 IEEE Electron Device Lett. 13 501
[15] Karoui M B, Gharbi R, Alzaied N and Fathallah M 2008 Materials Science and Engineering 28 799
[16] Hull B A, Sumakeris J J, O'Loughlin M J and Zhang Q 2008 IEEE Trans. Electron Devices 55 1864
[17] Frey W L and Ryssel H 2001 Applied Surface Science 184 413
[18] Wang S G, Yang L A, Zhang Y M, Zhang Y M, Zhang Z Y and Yan J F 2003 Chin. Phys. 12 322
[19] Gerritsen E, Keetels H A A and Ligthart H J 1989 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 39 614
[20] Itoh A, Kimoto T and Matsunami H 1995 IEEE Electron Devices Lett. 16 280
[21] Itoh A and Matsunami H 1997 Phys. Stat. Sol. (a) 162 389
[22] Card H C and Rhoderick E H 1971 J. Phys. D: Appl. Phys. 4 1589
[23] Ohno T, Onose H and Sugawara Y 1999 J. Electron Mater. 28 1801
[24] Capano M A, Ryu S and Melloch M R 1998 J. Electron Mater. 27 370
[25] Capano M A, Ryu S and Cooper J A 1999 J. Electron Mater. 28 214
[26] Wang J J, Lambers E S, Pearton S J and Ostling M 1998 Solid State Electron. 42 2283
[27] Constantinidis G, Kuzmic J, Michelakis K and Tsagaraki K 1998 Solid State Electron. 42 253
[28] Chen M and Wang J N 1999 Basic Material Physics for Semiconductor Devices (Beijing, China: Science Press) 5(1) p283 (in Chinese)
[29] Handy E M, Rao M V and Jones K A 1999 J. Appl. Phys. 86 746
[30] Seshadri S, Eldridge G W and Agarwal A K 1998 App. Phys. Lett. 72 2026
[31] Yang Z D, Du H H and Libera M 1996 J. Mater. Res. 10 1441
[32] Capano M A, Santhakumar R and Das M K 1999 Electron. Mater. Conf. p210
[33] Rao M V, Tucker J and Holland O W 1999 J. Electron Mater. 28 334
[34] Abe K, Ohshima T and Itoh H 1998 Mater. Sci. Forum 264--268 721
[35] Senzaki J, Fukuda K and Arai K 2003 J. Appl. Phys. 94 2942
[36] Anwand W, Brauer G and Panknin D 2001 Mater. Sci. Forum 363--365 442
[37] Pankin D, Wirth H and Anwand W 2000 Mater. Sci. Forum 338--342 877
[38] Sundaresan S G, Mahadik N A, Qadri S B and Schreifels J A 2008 Solid State Electron. 52 140
[39] Kimoto T, Takemura O and Matsunami H 1998 J. Electron Mater. 27 358
[40] Jones K A, Wood M C, Zheleva T S and Kirchner K W 2008 J. Electron Mater. 37 917
[41] Wang S G, Zhang Y M and Zhang Y M 2003 Chin. Phys. 12 89
[1] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[2] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[3] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[4] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[5] Assessing the effect of hydrogen on the electronic properties of 4H-SiC
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(5): 056108.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film
Jian Zhang(张健), Hao-Chun Zhang(张昊春), Zi-Liang Huang(黄子亮), Wen-Bo Sun(孙文博), and Yi-Yi Li(李依依). Chin. Phys. B, 2022, 31(1): 014402.
[8] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[9] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[10] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[11] Conductance and dielectric properties of hydrogen and hydroxyl passivated SiCNWs
Wan-Duo Ma(马婉铎), Ya-Lin Li(李亚林), Pei Gong(龚裴), Ya-Hui Jia(贾亚辉), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(10): 107801.
[12] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[13] Design and fabrication of 10-kV silicon-carbide p-channel IGBTs with hexagonal cells and step space modulated junction termination extension
Zheng-Xin Wen(温正欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Jun Chen(陈俊), Ya-Wei He(何亚伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2019, 28(6): 068504.
[14] Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
Jin-Lan Li(李金岚), Yun Li(李赟), Ling Wang(汪玲), Yue Xu(徐跃), Feng Yan(闫锋), Ping Han(韩平), Xiao-Li Ji(纪小丽). Chin. Phys. B, 2019, 28(2): 027303.
[15] Hysteresis effect in current-voltage characteristics of Ni/n-type 4H-SiC Schottky structure
Hao Yuan(袁昊), Qing-Wen Song(宋庆文), Chao Han(韩超), Xiao-Yan Tang(汤晓燕), Xiao-Ning He(何晓宁), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门). Chin. Phys. B, 2019, 28(11): 117303.
No Suggested Reading articles found!