Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(1): 010601    DOI: 10.1088/1674-1056/19/1/010601
GENERAL Prev   Next  

An improved loopless mounting method for cryocrystallography

Qi Jian-Xun(齐建勋) and Jiang Fan(江凡)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Based on a recent loopless mounting method, a simplified loopless and bufferless crystal mounting method is developed for macromolecular crystallography. This simplified crystal mounting system is composed of the following components: a home-made glass capillary, a brass seat for holding the glass capillary, a flow regulator, and a vacuum pump for evacuation. Compared with the currently prevalent loop mounting method, this simplified method has almost the same mounting procedure and thus is compatible with the current automated crystal mounting system. The advantages of this method include higher signal-to-noise ratio, more accurate measurement, more rapid flash cooling, less x-ray absorption and thus less radiation damage to the crystal. This method can be extended to the flash-freeing of a crystal without or with soaking it in a lower concentration of cryoprotectant, thus it may be the best option for data collection in the absence of suitable cryoprotectant. Therefore, it is suggested that this mounting method should be further improved and extensively applied to cryocrystallographic experiments.
Keywords:  cryoprotectant      crystal mounting      data collection       flash cooling  
Received:  24 September 2009      Revised:  22 October 2009      Accepted manuscript online: 
PACS:  61.50.-f (Structure of bulk crystals)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  61.80.-x (Physical radiation effects, radiation damage)  
  78.70.Dm (X-ray absorption spectra)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No.~10674172).

Cite this article: 

Qi Jian-Xun(齐建勋) and Jiang Fan(江凡) An improved loopless mounting method for cryocrystallography 2010 Chin. Phys. B 19 010601

[1] Nienaber V L, Richardson P L, Klighofer V, Bouska J J, Giranda V L and Greer J 2000 Nat. Biotechnol 18 1105
[2] Service R F 1999 Science 285 1345
[3] Verlinde C L and Hol W G 1994 Structure 2 577
[4] Bernal J D and Crowfoot D 1934 Nature (London) 133 794
[5] Teng T Y 1990 J. Appl. Cryst. 23 387
[6] Garman E F and Schneider T R 1997 J. Appl. Cryst. 30 211
[7] Thorne R E, Stum Z, Kmetko J, O'Neill K and Gillilan R 2003 J. Appl. Cryst. 36 1455
[8] Kitago Y, Watanabe N and Tanaka I 2005 Acta Cryst.D 61 1013
[9] Snell G, Cork C, Nordmeyer R, Cornell E, Meigs G, Yegian D, Jaklevic J, Jin J, Stevens R C and Earnest T 2004 Structure 12 537
[10] Hope H 1988 Acta Cryst. B 44 22
[11] Hope H, Frolow F, Bohlen K V, Makowski I, Kratky C, Halfon Y, Damz H, Webster P, Bartels K S, Wittmann H G and Yonath A 1989 Acta Cryst. B 45 190
[12] Hope H 1990 Annu. Rev. Biophys. Biophys. Chem. 19 107
[13] Parkin S and Hope H 1998 J. Appl. Cryst. 31 945
[14] Hope H 2006 International Tables for Crystallography Vol F (Kluwer Academic Publishers) p197
[15] Garman E 1999 Acta Cryst.D 55 1641
[16] Matthews B W 1968 J. Mol. Biol. 33 491
[17] Muchmore S W, Olson J, Jones R, Pan J, Blum M, Greer J, Merrick S M, Magdalinos P and Nienaber V L 2000 Structure 8 R243
[18] Cohen A E, Ellis P J, Miller M D, Deacon A M and Phizackerley R P 2002 J. Appl. Cryst. 35 720
[19] Cui Y L, Ding Y K, Hu X, Huang Y X, Jiang S E, Li C G Liu Z L, Yi R Q, Zhang H Q and Zhang J H 2007 Acta Phys. Sin. 56 1447 (in Chinese)
[20] Guo L J, Liu Y, Liu K J, Liu W M, Qian S X, Xu C H and Yan Y L 2006 Chin. Phys. 15 1725
[21] Angell C A and Tucker J C 1980 J. Phys. Chem. 84 268
[22] Teng T Y and Moffat K 1998 J. Appl. Cryst. 31 252
[1] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[2] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[3] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[6] Structural modulation and physical properties of cobalt-doped layered La2M5As3O2 (M= Cu, Ni) compounds
Lei Yang(杨蕾), Yan-Peng Song(宋艳鹏), Jun-Jie Wang(王俊杰), Xu Chen(陈旭), Hui-Jing Du(杜会静), and Jian-Gang Guo(郭建刚). Chin. Phys. B, 2021, 30(7): 076106.
[7] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[8] Low thermal expansion and broad band photoluminescence of Zr0.1Al1.9Mo2.9V0.1O12
Jun-Ping Wang(王俊平), Qing-Dong Chen(陈庆东), Li-Gang Chen(陈立刚), Yan-Jun Ji(纪延俊), You-Wen Liu(刘友文), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(3): 036501.
[9] tP40 carbon: A novel superhard carbon allotrope
Heng Liu(刘恒), Qing-Yang Fan(樊庆扬)†, Fang Yang(杨放), Xin-Hai Yu(于新海), Wei Zhang(张伟), and Si-Ning Yun(云斯宁)‡. Chin. Phys. B, 2020, 29(10): 106102.
[10] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[11] Synthesis, structure, and properties of Ba9Co3Se15 with one-dimensional spin chains
Lei Duan(段磊), Xian-Cheng Wang(望贤成), Jun Zhang(张俊), Jian-Fa Zhao(赵建发), Li-Peng Cao(曹立朋), Wen-Min Li(李文敏), Run-Ze Yu(于润泽), Zheng Deng(邓正), Chang-Qing Jin(靳常青). Chin. Phys. B, 2020, 29(3): 036102.
[12] Crystal structure and magnetic properties of disordered alloy ErGa3- xMnx
Cong Wang(王聪), Yong-Quan Guo(郭永权), Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2019, 28(8): 086101.
[13] Isostructural phase transition-induced bulk modulus multiplication in dopant-stabilized ZrO2 solid solution
Min Wang(王敏), Wen-Shu Shen(沈文舒), Xiao-Dong Li(李晓东), Yan-Chun Li(李延春), Guo-Zhao Zhang(张国召), Cai-Long Liu(刘才龙), Lin Zhao(赵琳), Shu-Peng Lv(吕舒鹏), Chun-Xiao Gao(高春晓), Yong-Hao Han(韩永昊). Chin. Phys. B, 2019, 28(7): 076109.
[14] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[15] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
No Suggested Reading articles found!