Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(8): 3373-3378    DOI: 10.1088/1674-1056/18/8/042
GENERAL Prev   Next  

Characterization of a velocity-tunable 87Rb cold atomic source with a high-speed imaging technology

Feng Yan-Ying(冯焱颖)a), Zhu Chang-Xing(朱常兴)a), Wang Xiao-Jia(王晓佳)c), Xue Hong-Bo(薛洪波)b), Ye Xiong-Ying(叶雄英)a), and Zhou Zhao-Ying(周兆英)a)
a State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China; b Information Engineering School, China University of Geosciences, Beijing 100084, China; c School of Electronic and Computer Science and Technology, North University of China, Taiyuan 030051, China
Abstract  This paper has developed and characterized a method to produce a velocity-tunable 87Rb cold atomic source for atomic interferometry application. Using a high speed fluorescence imaging technology, it reports that the dynamic process of the atomic source formation is observed and the source performances including the flux and the initial velocity are characterized. A tunable atomic source with the initial velocity of 1.4~2.6 m/s and the atomic source flux of 2×108~ 6×109 atoms/s has been obtained with the built experimental setup.
Keywords:  cold atomic source      velocity-tunable      high speed fluorescence imaging  
Received:  23 May 2008      Revised:  11 December 2008      Accepted manuscript online: 
PACS:  37.10.De (Atom cooling methods)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported in part by National Natural Science Foundation of China (Grant No 50775127/E0525) and National Basic Research Specialized Program of China (Grant No 2007CB306504).

Cite this article: 

Feng Yan-Ying(冯焱颖), Zhu Chang-Xing(朱常兴), Wang Xiao-Jia(王晓佳), Xue Hong-Bo(薛洪波), Ye Xiong-Ying(叶雄英), and Zhou Zhao-Ying(周兆英) Characterization of a velocity-tunable 87Rb cold atomic source with a high-speed imaging technology 2009 Chin. Phys. B 18 3373

[1] Quantum degenerate Bose-Fermi atomic gas mixture of 23Na and 40K
Ziliang Li(李子亮), Zhengyu Gu(顾正宇), Zhenlian Shi(师振莲), Pengjun Wang(王鹏军), and Jing Zhang(张靖). Chin. Phys. B, 2023, 32(2): 023701.
[2] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[3] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[4] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[5] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[6] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[7] Production of dual species Bose-Einstein condensates of 39K and 87Rb
Cheng-Dong Mi(米成栋), Khan Sadiq Nawaz, Peng-Jun Wang(王鹏军), Liang-Chao Chen(陈良超), Zeng-Ming Meng(孟增明), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2021, 30(6): 063401.
[8] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[9] Enhanced optical molasses cooling for Cs atoms with largely detuned cooling lasers
Di Zhang(张迪), Yu-Qing Li(李玉清), Yun-Fei Wang(王云飞), Yong-Ming Fu(付永明), Peng Li(李鹏), Wen-Liang Liu(刘文良), Ji-Zhou Wu(武寄洲), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(2): 023203.
[10] Expansion dynamics of a spherical Bose-Einstein condensate
Rui-Zong Li(李睿宗), Tian-You Gao(高天佑), Dong-Fang Zhang(张东方), Shi-Guo Peng(彭世国), Ling-Ran Kong(孔令冉), Xing Shen(沈星), Kai-Jun Jiang(江开军). Chin. Phys. B, 2019, 28(10): 106701.
[11] Excessive levitation for the efficient loading of large-volume optical dipole traps
Xiaoqing Wang(王晓青), Yuqing Li(李玉清), Guosheng Feng(冯国胜), Jizhou Wu(武寄洲), Jie Ma(马杰), Liantuan Xiao(肖连团), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(1): 018702.
[12] Tuning the velocity and flux of a low-velocity intense source of cold atomic beam
Shu Chen(陈姝), Ying-Ying Li(李营营), Xue-Shu Yan(颜学术), Hong-Bo Xue(薛洪波), Yan-Ying Feng(冯焱颖). Chin. Phys. B, 2017, 26(11): 113703.
[13] Raman sideband cooling of rubidium atoms in optical lattice
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2017, 26(8): 080701.
[14] Development of adjustable permanent magnet Zeeman slowers for optical lattice clocks
Xiao-Hang Zhang(张晓航), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(5): 053701.
[15] Intense source of cold cesium atoms based on a two-dimensional magneto-optical trap with independent axial cooling and pushing
Jia-Qiang Huang(黄家强), Xue-Shu Yan(颜学术), Chen-Fei Wu(吴晨菲), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2016, 25(6): 063701.
No Suggested Reading articles found!