Please wait a minute...
Chin. Phys. B, 2009, Vol. 18(7): 2680-2689    DOI: 10.1088/1674-1056/18/7/010
GENERAL Prev   Next  

A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system

Dong En-Zeng(董恩增)a)† , Chen Zai-Ping(陈在平)a), Chen Zeng-Qiang(陈增强)b), and Yuan Zhu-Zhi(袁著祉)b)
a Department of Automation, Tianjin University of Technology, Tianjin 300484, China; b Department of Automation, Nankai University, Tianjin 300071, China
Abstract  This paper presents a new 3D quadratic autonomous chaotic system which contains five system parameters and three quadratic cross-product terms, and the system can generate a single four-wing chaotic attractor with wide parameter ranges. Through theoretical analysis, the Hopf bifurcation processes are proved to arise at certain equilibrium points. Numerical bifurcation analysis shows that the system has many interesting complex dynamical behaviours; the system trajectory can evolve to a chaotic attractor from a periodic orbit or a fixed point as the proper parameter varies. Finally, an analog electronic circuit is designed to physically realize the chaotic system; the existence of four-wing chaotic attractor is verified by the analog circuit realization.
Keywords:  chaos      four-wing chaotic attractor      bifurcation analysis      chaotic circuit  
Received:  12 December 2008      Revised:  16 March 2009      Accepted manuscript online: 
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos 60774088 and 10772135), the Foundation of the Application Base and Frontier Technology Research Project of Tianjin, China (Grant Nos 07JCZDJC09600, 08JCZDJC21900 and 08JCZDJC18600) and the Tianjin Key Laboratory for Control Theory \& Applications in Complicated Industry Systems of China.

Cite this article: 

Dong En-Zeng(董恩增), Chen Zai-Ping(陈在平), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉) A novel four-wing chaotic attractor generated from a three-dimensional quadratic autonomous system 2009 Chin. Phys. B 18 2680

[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[7] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[8] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[11] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[12] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
[13] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[14] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[15] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
No Suggested Reading articles found!