Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(8): 2874-2880    DOI: 10.1088/1674-1056/17/8/020
GENERAL Prev   Next  

An evolutionary model of urban bus transport network based on B-space

Zhu Zhen-Tao(朱振涛)a)b), Zhou Jing(周晶)a), Li Ping(李平)c), and Chen Xing-Guang(陈星光)a)
a School of Management and Engineering, Nanjing University, Nanjing 210093, China; b School of Economics and Management, Nanjing Institute of Technology, Nanjing 211167, China; c Department of Basic Sciences, Nanjing Institute of Technology, Nanjing 211167, China 
Abstract  In this paper, an evolutionary model of bus transport network in B-space is developed. It includes the effect of the overlapping ratio of new route on network performance and overcomes the disadvantage, i.e. lack of economic consideration, in the evolutionary bus transport network model in P-space proposed by Chen et al (2007). The degree distribution functions are derived by using the mean-field method and the master equation method, separately. The relationship between the new stop ratio of a route, $\lambda $, and the error in exponential of degree distribution function from the mean-field method is developed as ${\Delta}$Slope$=\lambda/(1 - \lambda ) + \ln (1 - \lambda)$. Finally, the bus transport networks of Hangzhou and Nanjing are simulated by using this model, and the results show that some characteristic index values of the simulated networks are closer to the empirical data than those from Chen's model.
Keywords:  complex networks      Urban bus transport network      B-space      master equation method  
Received:  11 November 2007      Revised:  12 March 2008      Accepted manuscript online: 
PACS:  89.40.Bb (Land transportation)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 70571033) and the State Key Development Program for Basic Research of China (Grant No 2006CB705500).

Cite this article: 

Zhu Zhen-Tao(朱振涛), Zhou Jing(周晶), Li Ping(李平), and Chen Xing-Guang(陈星光) An evolutionary model of urban bus transport network based on B-space 2008 Chin. Phys. B 17 2874

[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!