Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(1): 23-26    DOI: 10.1088/1674-1056/17/1/004
GENERAL Prev   Next  

The density wave in a new anisotropic continuum model

Ge Hong-Xia(葛红霞)a)b), Dai Shi-Qiang(戴世强)b), and Dong Li-Yun(董力耘)b)
a College of Sciences, Ningbo University, Ningbo 315211, China; b Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China
Abstract  In this paper the new continuum traffic flow model proposed by Jiang et al is developed based on an improved car-following model, in which the speed gradient term replaces the density gradient term in the equation of motion. It overcomes the wrong-way travel which exists in many high-order continuum models. Based on the continuum version of car-following model, the condition for stable traffic flow is derived. Nonlinear analysis shows that the density fluctuation in traffic flow induces a variety of density waves. Near the onset of instability, a small disturbance could lead to solitons determined by the Korteweg--de-Vries (KdV) equation, and the soliton solution is derived.
Keywords:  high-order continuum model      density waves      KdV equation  
Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
Fund: Project supported by the National Basic Research Program of China (Grant No 2006CB705500), the National Natural Science Foundation of China (Grant Nos 10532060 and 10602025), Scientific Research Fund of Zhejiang Provincial Education Department, China (Gra

Cite this article: 

Ge Hong-Xia(葛红霞), Dai Shi-Qiang(戴世强), and Dong Li-Yun(董力耘) The density wave in a new anisotropic continuum model 2008 Chin. Phys. B 17 23

[1] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[2] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[3] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[4] Stability analysis of multiple-lattice self-anticipative density integration effect based on lattice hydrodynamic model in V2V environment
Geng Zhang(张埂) and Da-Dong Tian(田大东). Chin. Phys. B, 2021, 30(12): 120201.
[5] Painlevé property, local and nonlocal symmetries, and symmetry reductions for a (2+1)-dimensional integrable KdV equation
Xiao-Bo Wang(王晓波), Man Jia(贾曼), and Sen-Yue Lou(楼森岳). Chin. Phys. B, 2021, 30(1): 010501.
[6] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[7] Nonlocal symmetries and similarity reductions for Korteweg-de Vries-negative-order Korteweg-de Vries equation
Heng-Chun Hu(胡恒春), Fei-Yan Liu(刘飞艳). Chin. Phys. B, 2020, 29(4): 040201.
[8] Decaying solitary waves propagating in one-dimensional damped granular chain
Zongbin Song(宋宗斌), Xueying Yang(杨雪滢), Wenxing Feng(封文星), Zhonghong Xi(席忠红), Liejuan Li(李烈娟), Yuren Shi(石玉仁). Chin. Phys. B, 2018, 27(7): 074501.
[9] Bright and dark soliton solutions for some nonlinear fractional differential equations
Ozkan Guner, Ahmet Bekir. Chin. Phys. B, 2016, 25(3): 030203.
[10] New solutions from nonlocal symmetry of the generalized fifth order KdV equation
Liu Xi-Zhong (刘希忠), Yu Jun (俞军), Ren Bo (任博). Chin. Phys. B, 2015, 24(8): 080202.
[11] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Zhou Wei-En (周炜恩), Chen Xu-Dong (陈绪栋). Chin. Phys. B, 2014, 23(8): 080204.
[12] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong (张弘), Song Song-He (宋松和), Chen Xu-Dong (陈绪栋), Zhou Wei-En (周炜恩). Chin. Phys. B, 2014, 23(7): 070208.
[13] Abundant solutions of Wick-type stochastic fractional 2D KdV equations
Hossam A. Ghany, Abd-Allah Hyder. Chin. Phys. B, 2014, 23(6): 060503.
[14] The fractional coupled KdV equations:Exact solutions and white noise functional approach
Hossam A. Ghany, A. S. Okb El Bab, A. M. Zabel, Abd-Allah Hyder. Chin. Phys. B, 2013, 22(8): 080501.
[15] Painlevé integrability of generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions
Xu Gui-Qiong (徐桂琼). Chin. Phys. B, 2013, 22(5): 050203.
No Suggested Reading articles found!