Please wait a minute...
Chinese Physics, 2006, Vol. 15(5): 969-974    DOI: 10.1088/1009-1963/15/5/017
GENERAL Prev   Next  

Spatial distribution of electron characteristic in argon rf glow discharges

Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳)
Department of Physics, Shantou University, Shantou 515063, China
Abstract  The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
Keywords:  spatial distribution of electron characteristic      a movable Langmuir probe      radio frequency glow discharge  
Received:  26 December 2005      Revised:  03 March 2006      Accepted manuscript online: 
PACS:  52.80.Hc (Glow; corona)  
  52.25.-b (Plasma properties)  
  52.70.Ds (Electric and magnetic measurements)  
  52.77.Dq (Plasma-based ion implantation and deposition)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No G2000028208).

Cite this article: 

Zhu Zu-Song (祝祖送), Lin Kui-Xun (林揆训), Lin Xuan-Ying (林璇英), Qiu Gui-Ming (邱桂明), Yu Yun-Peng (余云鹏), Luo Yi-Lin (罗以琳) Spatial distribution of electron characteristic in argon rf glow discharges 2006 Chinese Physics 15 969

[1] Review on ionization and quenching mechanisms of Trichel pulse
Anbang Sun(孙安邦), Xing Zhang(张幸), Yulin Guo(郭雨林), Yanliang He(何彦良), and Guanjun Zhang(张冠军). Chin. Phys. B, 2021, 30(5): 055207.
[2] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[3] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[4] Characteristics and underlying physics of ionic wind in dc corona discharge under different polarities
Tongkai Zhang(张桐恺), Yu Zhang(张宇), Qizheng Ji(季启政), Ben Li(李犇), Jiting Ouyang(欧阳吉庭). Chin. Phys. B, 2019, 28(7): 075202.
[5] Synchrotron radiation intensity and energy of runaway electrons in EAST tokamak
Y K Zhang(张永宽), R J Zhou(周瑞杰), L Q Hu(胡立群), M W Chen(陈美文), Y Chao(晁燕), EAST team. Chin. Phys. B, 2018, 27(5): 055206.
[6] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[7] Effect of electrical discharge in water on concentration of nitrate solution
F Sohbatzadeh, H Bagheri, R Safari. Chin. Phys. B, 2017, 26(2): 025101.
[8] Numerical simulation of a direct current glow discharge in atmospheric pressure helium
Zeng-Qian Yin(尹增谦), Yan Wang(汪岩), Pan-Pan Zhang(张盼盼), Qi Zhang(张琦), Xue-Chen Li(李雪辰). Chin. Phys. B, 2016, 25(12): 125203.
[9] A novel simulation method for positive corona current pulses
Liu Yang (刘阳), Cui Xiang (崔翔), Lu Tie-Bing (卢铁兵), Li Xue-Bao (李学宝), Wang Zhen-Guo (王振国), Xiang Yu (向宇), Wang Xiao-Bo (王小波). Chin. Phys. B, 2015, 24(6): 065201.
[10] Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique
U. Ikhlaq, R. Ahmad, M. Shafiq, S. Saleem, M. S. Shah, T. Hussain, I. A. Khan, K. Abbas, M. S. Abbas. Chin. Phys. B, 2014, 23(10): 105203.
[11] Characteristics of a large gap uniform discharge excited by DC voltage at atmospheric pressure
Li Xue-Chen (李雪辰), Bao Wen-Ting (鲍文婷), Jia Peng-Ying (贾鹏英), Zhao Huan-Huan (赵欢欢), Di Cong (狄聪), Chen Jun-Ying (陈俊英). Chin. Phys. B, 2014, 23(9): 095202.
[12] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[13] Determinations of plasma density and decay time in the hollow cathode discharge by microwave transmission
Zhang Lin (张林), He Feng (何锋), Li Shi-Chao (李世超), Ouyang Ji-Ting (欧阳吉庭). Chin. Phys. B, 2013, 22(12): 125202.
[14] Local electron mean energy profile of positive primary streamer discharge with pin-plate electrodes in oxygen–nitrogen mixtures
Sima Wen-Xia (司马文霞), Peng Qing-Jun (彭庆军), Yang Qing (杨庆), Yuan Tao (袁涛), Shi Jian (施健). Chin. Phys. B, 2013, 22(1): 015203.
[15] Fabricating a reactive surface on the fibroin film by a room-temperature plasma jet array for biomolecule immobilization
Chen Guang-Liang (陈光良), Zheng Xu (郑旭), Lü Guo-Hua (吕国华), Zhang Zhao-Xia (张朝霞), Sylvain Massey, Wilson Smith, Michael Tatoulian, Yang Si-Ze (杨思泽). Chin. Phys. B, 2012, 21(10): 105201.
No Suggested Reading articles found!