Please wait a minute...
Chin. Phys., 2005, Vol. 14(2): 331-335    DOI: 10.1088/1009-1963/14/2/019
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Differential, elastic integral and moment transfer cross sections for electron scattering from N2 at intermediate- and high-energies

Shi De-Henga, Liu Yu-Fangb, Sun Jin-Fengc, Zhu Zun-Luec, Yang Xiang-Dongd
a College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China; b Department of Physics, Henan Normal University, Xinxiang 453007, China; c Department of Physics, Henan Normal University, Xinxiang 453007, China; Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; d Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  A complex optical model potential modified by incorporating the concept of bonded atom, with the overlapping effect of electron clouds between two atoms in a molecule taken into consideration, is firstly employed to calculate the differential cross sections, elastic integral cross sections, and moment transfer cross sections for electron scattering from molecular nitrogen over the energy range 300—1000eV by using additivity rule model at Hartree—Fock level. The bonded-atom concept is used in the study of the complex optical model potential composed of static, exchange, correlation polarization and absorption contributions. The calculated quantitative molecular differential cross sections, elastic integral cross sections, and moment transfer cross sections are compared with the experimental and theoretical ones wherever available, and they are found to be in good agreement with each other. It is shown that the additivity rule model together with the complex optical model potential modified by incorporating the concept of bonded atom is completely suitable for the calculations of differential cross section, elastic integral cross section and moment transfer cross section over the intermediate- and high-energy ranges.
Keywords:  moment transfer cross section      elastic integral cross section      electron scattering      additivity rule      differential cross section  
Received:  21 July 2004      Revised:  30 September 2004      Published:  02 March 2005
PACS:  34.80.-i (Electron and positron scattering)  
  31.15.xr (Self-consistent-field methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10174019).

Cite this article: 

Shi De-Heng, Liu Yu-Fang, Sun Jin-Feng, Zhu Zun-Lue, Yang Xiang-Dong Differential, elastic integral and moment transfer cross sections for electron scattering from N2 at intermediate- and high-energies 2005 Chin. Phys. 14 331

[1] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[2] Relativistic electron scattering from freely movable proton/μ+ in the presence of strong laser field
Ningyue Wang(王宁月), Liguang Jiao(焦利光), Aihua Liu(刘爱华). Chin. Phys. B, 2019, 28(9): 093402.
[3] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[4] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[5] Polarization and exchange effects in elastic scattering of electron with atoms and ions
Zhang-Jin Chen(陈长进), Dan-Dan Cui(崔丹丹). Chin. Phys. B, 2018, 27(5): 053403.
[6] Selection rules for electric multipole transition of triatomic molecule in scattering experiments
Hong-Chun Tian(田红春), Long-Quan Xu(徐龙泉), Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2018, 27(4): 043101.
[7] State-to-state dynamics of F(2P)+HO(2Π) →O(3P)+HF(1+) reaction on 13A" potential energy surface
Juan Zhao(赵娟), Hui Wu(吴慧), Hai-Bo Sun(孙海波), Li-Fei Wang(王立飞). Chin. Phys. B, 2018, 27(2): 023102.
[8] Differential cross sections of positron—hydrogen collisions
Rong-Mei Yu(于荣梅), Chun-Ying Pu(濮春英), Xiao-Yu Huang(黄晓玉), Fu-Rong Yin(殷复荣), Xu-Yan Liu(刘旭焱), Li-Guang Jiao(焦利光), Ya-Jun Zhou(周雅君). Chin. Phys. B, 2016, 25(7): 073401.
[9] Path integral approach to electron scattering in classical electromagnetic potential
Chuang Xu(许闯), Feng Feng(冯锋), Ying-Jun Li(李英骏). Chin. Phys. B, 2016, 25(5): 050303.
[10] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[11] State-to-state quantum dynamics of N(2D)+HD (v=0, j=0) reaction
Yong Zhang(张勇). Chin. Phys. B, 2016, 25(12): 123104.
[12] Triple differential cross sections of magnesium in doubly symmetric geometry
S Y Sun(孙世艳), X Y Miao(苗向阳), Xiang-Fu Jia(贾祥富). Chin. Phys. B, 2016, 25(1): 013401.
[13] State-to-state quantum dynamics of the N(4S)+H2 (X1Σ+)→NH(X3-)+H(2S) reaction and its reaction mechanism analysis
Zhang Jing, Gao Shou-Bao, Wu Hui, Meng Qing-Tian. Chin. Phys. B, 2015, 24(8): 083104.
[14] Selection rules for electric multipole transition of diatomic molecule in scattering experiments
Zhu Lin-Fan, Tian Hong-Chun, Liu Ya-Wei, Kang Xu, Liu Guo-Xing. Chin. Phys. B, 2015, 24(4): 043101.
[15] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian, Zhang Ying-Ying, Shi Ying, Li Ze-Rui, Jin Ming-Xing. Chin. Phys. B, 2015, 24(4): 043402.
No Suggested Reading articles found!