Please wait a minute...
Chin. Phys., 2000, Vol. 9(4): 244-249    DOI: 10.1088/1009-1963/9/4/002
GENERAL Prev   Next  

USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING

Peng Zhao-wang, Zhong Ting-xiu
School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China
Abstract  Since the conventional open-loop optimal targeting of chaos is very sensitive to noise, a close-loop optimal targeting method is proposed to improve the targeting performance under noise. The present optimal targeting model takes into consideration both precision and speed of the targeting procedure. The parameters, rather than the output, of the targeting controller, are directly optimized to obtain optimal chaos targeting. Analysis regarding the mechanism is given from physics aspect and numerical experiment on the Hénon map is carried out to compare the targeting performance under noise between the close-loop and the open-loop methods.
Received:  17 June 1999      Published:  12 June 2005
PACS:  05.40.Ca (Noise)  
  05.45.Gg (Control of chaos, applications of chaos)  

Cite this article: 

Peng Zhao-wang, Zhong Ting-xiu USING OPTIMAL FEEDBACK CONTROL FOR CHAOS TARGETING 2000 Chin. Phys. 9 244

[1] Chaotic signal denoising algorithm based on sparse decomposition
Jin-Wang Huang(黄锦旺), Shan-Xiang Lv(吕善翔), Zu-Sheng Zhang(张足生), Hua-Qiang Yuan(袁华强). Chin. Phys. B, 2020, 29(6): 060505.
[2] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[3] Stationary response of stochastic viscoelastic system with the right unilateral nonzero offset barrier impacts
Deli Wang(王德莉), Wei Xu(徐伟), Xudong Gu(谷旭东). Chin. Phys. B, 2019, 28(1): 010203.
[4] Effect of stochastic electromagnetic disturbances on autapse neuronal systems
Liang-Hui Qu(曲良辉), Lin Du(都琳), Zi-Chen Deng(邓子辰), Zi-Lu Cao(曹子露), Hai-Wei Hu(胡海威). Chin. Phys. B, 2018, 27(11): 118707.
[5] Controlling of entropic uncertainty in open quantum system via proper placement of quantum register
Ying-Hua Ji(嵇英华), Qiang Ke(柯强), Ju-Ju Hu(胡菊菊). Chin. Phys. B, 2018, 27(10): 100302.
[6] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[7] Stochastic bifurcations of generalized Duffing-van der Pol system with fractional derivative under colored noise
Wei Li(李伟), Mei-Ting Zhang(张美婷), Jun-Feng Zhao(赵俊锋). Chin. Phys. B, 2017, 26(9): 090501.
[8] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[9] Pattern dynamics of network-organized system with cross-diffusion
Qianqian Zheng(郑前前), Zhijie Wang(王直杰), Jianwei Shen(申建伟). Chin. Phys. B, 2017, 26(2): 020501.
[10] Multifractal modeling of the production of concentrated sugar syrup crystal
Sheng Bi(闭胜), Jianbo Gao(高剑波). Chin. Phys. B, 2016, 25(7): 070502.
[11] Modeling random telegraph signal noise in CMOS image sensor under low light based on binomial distribution
Yu Zhang(张钰), Xinmiao Lu(逯鑫淼), Guangyi Wang(王光义), Yongcai Hu(胡永才), Jiangtao Xu(徐江涛). Chin. Phys. B, 2016, 25(7): 070503.
[12] Stochastic response of van der Pol oscillator with two kinds of fractional derivatives under Gaussian white noise excitation
Yong-Ge Yang(杨勇歌), Wei Xu(徐伟), Ya-Hui Sun(孙亚辉), Xu-Dong Gu(谷旭东). Chin. Phys. B, 2016, 25(2): 020201.
[13] Response of a Duffing—Rayleigh system with a fractional derivative under Gaussian white noise excitation
Zhang Ran-Ran, Xu Wei, Yang Gui-Dong, Han Qun. Chin. Phys. B, 2015, 24(2): 020204.
[14] Stochastic resonance in an over-damped linear oscillator
Lin Li-Feng, Tian Yan, Ma Hong. Chin. Phys. B, 2014, 23(8): 080503.
[15] Double coherence resonance of the FitzHugh–Nagumo neuron driven by harmonic velocity noise
Song Yan-Li. Chin. Phys. B, 2014, 23(8): 080504.
No Suggested Reading articles found!