Please wait a minute...
Acta Physica Sinica (Overseas Edition), 1997, Vol. 6(2): 130-139    DOI: 10.1088/1004-423X/6/2/006
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

YBaCuO BICRYSTAL JUNCTIONS AND DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES

WANG SHI-GUANG (王世光), DAI YUAN-DONG (戴远东), ZENG XIANG-HUI (曾祥辉), ZHENG PEI-HUI (郑培辉), CHEN MING-LING (陈名玲), WANG SHOU-ZHENG (王守证), XIONG GUANG-CHENG (熊光成), LIAN GUI-JUN (连贵君), GAN ZI-ZHAO (甘子钊)
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
Abstract  We have prepared yttria-stabilized-zirconia bicrystal substrates using a simple hot-pressing method. The grain-boundary junctions have been fabricated with YBa2Cu3O7 thin films grown epitaxially on the bicrystals. The patterns are defined by conventional photolithography, The dc and microwave characteristics of the junctiorts and the dc superconducting quantum interference devices (SQUIDs) have been intensively studied. The current-voltage curves are bridge-typed with noise rounding near the critical current. Resistive tail has been observed in the resistance versus temperature curves. The results are compared with the theoretical prediction for classical Josephson junctions. It is found that the behavior of bicrystal junctions can be described in the frame of classical theory. The deviations are attributed to the nonuniformity of the junctions. The small loop dc SQUIDs demonstrate diffraction and interference effects with regard to the applied magnetic field. A large square-washer with a new configuration has been designed to enhance the effective area of dc SQUID as a magnetometer. It has achieved a magnetic field resolution down to 1 pT/(Hz)1/2(at 10Hz) at 77K.
Received:  09 February 1996      Revised:  23 April 1996      Accepted manuscript online: 
PACS:  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
  61.72.Mm (Grain and twin boundaries)  
  74.78.Bz  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  74.25.Sv (Critical currents)  
Fund: Project supported by the National Center for R&D on Superconductivity and the Trans-Century Talent Foundation of the State Education Commission of China.

Cite this article: 

WANG SHI-GUANG (王世光), DAI YUAN-DONG (戴远东), ZENG XIANG-HUI (曾祥辉), ZHENG PEI-HUI (郑培辉), CHEN MING-LING (陈名玲), WANG SHOU-ZHENG (王守证), XIONG GUANG-CHENG (熊光成), LIAN GUI-JUN (连贵君), GAN ZI-ZHAO (甘子钊) YBaCuO BICRYSTAL JUNCTIONS AND DC SUPERCONDUCTING QUANTUM INTERFERENCE DEVICES 1997 Acta Physica Sinica (Overseas Edition) 6 130

[1] Multiplexing technology based on SQUID for readout of superconducting transition-edge sensor arrays
Xinyu Wu(吴歆宇), Qing Yu(余晴), Yongcheng He(何永成), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2022, 31(10): 108501.
[2] Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil
Kang Yang(杨康), Hong-Wei Zhang(张宏伟), Qian-Nian Zhang(张千年),Jun-Jun Zha(查君君), and Deng-Chao Huang(黄登朝). Chin. Phys. B, 2022, 31(7): 070701.
[3] Development of series SQUID array with on-chip filter for TES detector
Wentao Wu(伍文涛), Zhirong Lin(林志荣), Zhi Ni(倪志), Peizhan Li(李佩展), Tiantian Liang(梁恬恬), Guofeng Zhang(张国峰), Yongliang Wang(王永良), Liliang Ying(应利良), Wei Peng(彭炜), Wen Zhang(张文), Shengcai Shi(史生才), Lixing You(尤立星), and Zhen Wang(王镇). Chin. Phys. B, 2022, 31(2): 028504.
[4] Fabrication of Josephson parameter amplifier and its applicationin squeezing vacuum fluctuations
Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Kai Xu(许凯), Xiaohui Song(宋小会), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Hekang Li(李贺康), Luhong Su(苏鹭红), Yirong Jin(金贻荣), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(12): 128502.
[5] Fabrication and characterization of all-Nb lumped-element Josephson parametric amplifiers
Hang Xue(薛航), Zhirong Lin(林志荣), Wenbing Jiang(江文兵), Zhengqi Niu(牛铮琦), Kuang Liu(刘匡), Wei Peng(彭炜), and Zhen Wang(王镇). Chin. Phys. B, 2021, 30(6): 068503.
[6] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[7] Compact NbN resonators with high kinetic inductance
Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2020, 29(12): 128401.
[8] Concept study of measuring gravitational constant using superconducting gravity gradiometer
Xing Bian(边星), Ho Jung Paik, Martin Vol Moody. Chin. Phys. B, 2018, 27(8): 080401.
[9] Characterization of barrier-tunable radio-frequency-SQUID for Maxwell's demon experiment
Gang Li(李刚), Suman Dhamala, Hao Li(李浩), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(6): 068501.
[10] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[11] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[12] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[13] Design of a gap tunable flux qubit with FastHenry
Naheed Akhtar, Yarui Zheng(郑亚锐), Mudassar Nazir, Yulin Wu(吴玉林), Hui Deng(邓辉), Dongning Zheng(郑东宁), Xiaobo Zhu(朱晓波). Chin. Phys. B, 2016, 25(12): 120305.
[14] An efficient calibration method for SQUID measurement system using three orthogonal Helmholtz coils
Hua Li(李华), Shu-Lin Zhang(张树林), Chao-Xiang Zhang(张朝祥), Xiang-Yan Kong(孔祥燕), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2016, 25(6): 068501.
[15] Frequency-tunable transmon in a three-dimensional copper cavity
Pan Jia-Zheng (潘佳政), Cao Zhi-Min (曹志敏), Fan Yun-Yi (范云益), Zhou Yu (周渝), Lan Dong (兰栋), Liu Yu-Hao (刘宇浩), Chen Zhi-Ping (陈志平), Li Yong-Chao (李永超), Cao Chun-Hai (曹春海), Xu Wei-Wei (许伟伟), Kang Lin (康琳), Chen Jian (陈健), Yu Hai-Feng (于海峰), Yu Yang (于扬), Sun Guo-Zhu (孙国柱), Wu Pei-Heng (吴培亨). Chin. Phys. B, 2015, 24(11): 110301.
No Suggested Reading articles found!