Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056402    DOI: 10.1088/1674-1056/ab820f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy

Yi-Fan Shen(沈逸凡)1, Xi-Bo Yin(尹锡波)2, Chao-Fan Xu(徐超凡)2, Jing He(贺靖)2, Jun-Ye Li(李俊烨)2, Han-Dong Li(李含冬)2, Xiao-Hong Zhu(朱小红)1, Xiao-Bin Niu(牛晓滨)2
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China;
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Epitaxial growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates are studied. The In2Se3 thin films grown below the β-to-α phase transition temperature (453 K) are characterized to be strained β-In2Se3 mixed with significant γ-In2Se3 phases. The pure-phased single-crystalline β-In2Se3 can be reproducibly achieved by in situ annealing the as-deposited poly-crystalline In2Se3 within the phase equilibrium temperature window of β-In2Se3. It is suggeted that the observed γ-to-β phase transition triggered by quite a low annealing temperature should be a rather lowered phase transition barrier of the epitaxy-stabilized In2Se3 thin-film system at a state far from thermodynamic equilibrium.
Keywords:  In2Se3      molecular beam epitaxy      single-crystalline      annealing and quench      phase transition  
Received:  31 January 2020      Revised:  14 March 2020      Accepted manuscript online: 
PACS:  64.60.My (Metastable phases)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306102 and 2018YFA0306703), the National Natural Science Foundation of China (Grant Nos. 61474014 and U1601208), and the Sichuan Science and Technology Program, China (Grant Nos. 2019YJ0202 and 20GJHZ0229).
Corresponding Authors:  Han-Dong Li, Xiao-Hong Zhu     E-mail:  hdli@uestc.edu.cn;xhzhu@scu.edu.cn

Cite this article: 

Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨) Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy 2020 Chin. Phys. B 29 056402

[1] Han G, Chen Z G, Drennan J and Zou J 2014 Small 10 2747
[2] Island J O, Blanter S I, Buscema M, Van der Zant H S J and Castellanos-Gomez A 2015 Nano Lett. 15 7853
[3] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L and Yu B 2014 ACS Nano 8 514
[4] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y and Zhu W G 2017 Nat. Commun. 8 14956
[5] Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q and Li L J 2018 Nano Lett. 18 1253
[6] Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Castro Neto A H and Loh K P 2018 Nano Lett. 18 6340
[7] Zhai T Y, Fang X S, Liao M Y, Xu X J, Li L, Liu B D, Koide Y, Ma Y, Yao J N, Bando Y and Golberg D 2010 ACS Nano 4 1596
[8] Ho C H, Lin C H, Wang Y P, Chen Y C, Chen S H and Huang Y S 2013 ACS Appl. Mater. Interfaces 5 2269
[9] Li Q L, Liu C H, Nie Y T, Chen W H, Gao X, Sun X H and Wang S D 2014 Nanoscale 6 14538
[10] Li H D, Ren W Y, Wang G Y, Gao L, Peng R M, Li H, Zhang P Y, Shafa M, Tong X, Luo S Y, Zhou Z H, Ji H N, Wu J, Niu X B and Wang Z M 2016 J. Phys. D: Appl. Phys. 49 145108
[11] Chen J, Du G and Liu X Y 2015 Chin. Phys. B 24 057702
[12] Choi M S, Cheong B K, Ra C H, Lee S, Bae J H, Lee S, Lee G D, Yang C W, Hone J and Yoo W J 2017 Adv. Mater. 29 1703568
[13] Pandiana M, Matheswarana P, Gokul B, Sathyamoorthy R and Asokan K 2018 Appl. Surf. Sci. 449 55
[14] Lee H, Kang D H and Tran L 2005 Mater. Sci. Eng. B 119 196
[15] Jin B, Kang D, Kim J, Meyyappan M and Lee J S 2013 J. Appl. Phys. 113 164303
[16] Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J L, Zhang S T, Bian L F, Sun J L, Meng X J and Chu J H 2016 Nanotechnology 27 364002
[17] Zheng Z Q, Yao J D and Yang G W 2017 ACS Appl. Mater. Interfaces 9 7288
[18] Feng W, Gao F, Hu Y X, Dai M J, Liu H, Wang L F and Hu P A 2018 ACS Appl. Mater. Interfaces 10 27584
[19] Chaiken A, Nauka K, Gibson G A, Lee H, Yang C C, Wu J, Ager J W, Yu K M and Walukiewicz W 2003 J. Appl. Phys. 94 2390
[20] Okamoto T, Yamada A and Konagai M 1997 J. Cryst. Growth 175-176 1045
[21] Zheng Z Q, Yao J D, Xiao J and Yang G W 2016 J. Mater. Chem. C 4 8094
[22] Balakrishnan N, Staddon C R, Smith E F, Stec J, Gay D, Mudd G W, Makarovsky O, Kudrynskyi Z R, Kovalyuk Z D, Eaves L, PatanéA and Beton P H 2016 2D Mater. 3 025030
[23] Zhou S, Tao X and Gu Y 2016 J. Phys. Chem. C 120 4753
[24] Ren W Y, Li H D, Gao L, Li Y, Zhang Z Y, Long C J, Ji H N, Niu X B, Lin Y and Wang Z W 2017 Nano Res. 10 247
[25] Li H D, Yu S P, Li Y, Channa A I, Ji H N, Wu J, Niu X B and Wang Z M 2019 Appl. Phys. Lett. 115 041602
[26] Li H D, Wang Z Y, Guo X, Wong T L, Wang N and Xie M H 2011 Appl. Phys. Lett. 98 043104
[27] Yuan Y F, Cao X R, Sun Y, Su J, Liu C M, Cheng L, Yuan L H, Zhang H and Li J 2017 RSC Adv. 7 46431
[28] Zhang F, Wang Z, Dong J Y, Nie A M, Xiang J Y, Zhu W G, Liu Z Y and Tao C G 2019 ACS Nano 13 8004
[29] Ke F, Liu C L, Gao Y, Zhang J K, Tan D Y, Han Y H, Ma Y Z, Shu J F, Yang W G, Chen B, Mao H K, Chen X J and Gao C X 2014 Appl. Phys. Lett. 104 212102
[30] Rasmussen A M, Mafi E, Zhu W G, Gu Y and McCluskey M D 2016 High Press. Res. 36 549
[31] Huang Y P, Huang X L, Wang X, Zhang W T, Zhou D, Zhou Q, Liu B B and Cui T 2019 Chin. Phys. B 28 096402
[32] Li H D, Zhang X N, Zhang Z, Mei Z X, Du X L and Xue Q K 2007 J. Appl. Phys. 101 106102
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[3] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[4] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[13] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[14] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
[15] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
No Suggested Reading articles found!