Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 047101    DOI: 10.1088/1674-1056/28/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Prediction of high-mobility two-dimensional electron gas at KTaO3-based heterointerfaces

Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Yi Li(李宜), Xin-Miao Zhang(张鑫淼), Xue-Jin Wang(王学晋), Yu-Fei Chen(陈宇飞), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Liang-Mo Mei(梅良模)
School of Physics, Shandong University, Jinan 250100, China
Abstract  

First-principles calculations are performed to explore the possibility of generating the two-dimensional electron gas (2DEG) at the interface between LaGaO3/KTaO3 and NdGaO3/KTaO3 (001) heterostructures. Two different models – i.e., the superlattice model and the thin film model–are used to conduct a comprehensive investigation of the origin of charge carriers. For the symmetric superlattice model, the LaGaO3 (or NdGaO3) film is nonpolar. The 2DEG with carrier density on the order of 1014 cm-2 originates from the Ta dxy electrons contributed by both LaGaO3 (or NdGaO3) and KTaO3. For the thin film model, large polar distortions occur in the LaGaO3 and NdGaO3 layer, which entirely screens the built-in electric field and prevents electrons from transferring to the interface. Electrons of KTaO3 are accumulated at the interface, contributing to the formation of the 2DEG. All the heterostructures exhibit conducting properties regardless of the film thickness. Compared with the Ti dxy electrons in SrTiO3-based heterostructures, the Ta dxy electrons have small effective mass and they are expected to move with higher mobility along the interface. These findings reveal the promising applications of 2DEG in novel nanoelectronic devices.

Keywords:  2DEG      first-principles calculation      interface  
Received:  27 December 2018      Revised:  13 February 2019      Accepted manuscript online: 
PACS:  71.10.Ca (Electron gas, Fermi gas)  
  63.20.dk (First-principles theory)  
  67.30.hp (Interfaces)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, and 51202132).

Corresponding Authors:  Ji-Chao Li     E-mail:  lijichao@sdu.edu.cn

Cite this article: 

Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Yi Li(李宜), Xin-Miao Zhang(张鑫淼), Xue-Jin Wang(王学晋), Yu-Fei Chen(陈宇飞), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Liang-Mo Mei(梅良模) Prediction of high-mobility two-dimensional electron gas at KTaO3-based heterointerfaces 2019 Chin. Phys. B 28 047101

[1] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
[2] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[3] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[4] Ohtomo A and Hwang H Y 2004 Nature 427 423
[5] Cen C, Thiel S, Hammerl G, Schneider C W, Andersen K E, Hellberg C S, Mannhart J and Levy J 2008 Nat. Mater. 7 298
[6] Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
[7] Huijben M, Rijnders G, Blank D H A, Bals S, Van Aert S, Verbeeck J, Van Tendeloo G, Brinkman A and Hilgenkamp H 2006 Nat. Mater. 5 556
[8] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[9] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A and Fert A 2007 Phys. Rev. Lett. 98 216803
[10] Kalabukhov A, Gunnarsson R, Borjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
[11] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
[12] Pavlenko N, Kopp T, Tsymbal E Y, Mannhart J and Sawatzky G A 2012 Phys. Rev. B 86 064431
[13] Willmott P R, Pauli S A, Herger R, Schleputz C M, Martoccia D, Patterson B D, Delley B, Clarke R, Kumah D, Cionca C and Yacoby Y 2007 Phys. Rev. Lett. 99 155502
[14] Salluzzo M, Gariglio S, Torrelles X, Ristic Z, Di Capua R, Drnec J, Sala M M, Ghiringhelli G, Felici R and Brookes N B 2013 Adv. Mater. 25 2333
[15] Popovic Z S, Satpathy S and Martin R M 2008 Phys. Rev. Lett. 101 256801
[16] Pentcheva R and Pickett W E 2008 Phys. Rev. B 78 205106
[17] Li J C, Beltran J I and Munoz M C 1952 Phys. Rev. B 87 5
[18] Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
[19] Basletic M, Maurice J L, Carretero C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S and Barthelemy A 2008 Nat. Mater. 7 621
[20] Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
[21] Singh-Bhalla G, Bell C, Ravichandran J, Siemons W, Hikita Y, Salahuddin S, Hebard A F, Hwang H Y and Ramesh R 2011 Nat. Phys. 7 80
[22] Chen Y Z, Christensen D V, Trier F, Pryds N, Smith A and Linderoth S 2012 Appl. Surf. Sci. 258 9242
[23] Plumb N C, Kobayashi M, Salluzzo M, Razzoli E, Matt C E, Strocov V N, Zhou K J, Shi M, Mesot J, Schmitt T, Patthey L and Radovic M 2017 Appl. Surf. Sci. 412 271
[24] Chen Y Z, Pryds N, Sun J R, Shen B G and Linderoth S 2013 Chin. Phys. B 22 116803
[25] Ishida H and Liebsch A 2008 Phys. Rev. B 77 115350
[26] Kim J S, Seo S S A, Chisholm M F, Kremer R K, Habermeier H U, Keimer B and Lee H N 2010 Phys. Rev. B 82 201407
[27] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marre D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
[28] Moetakef P, Cain T A, Ouellette D G, Zhang J Y, Klenov D O, Janotti A, Van de Walle C G, Rajan S, Allen S J and Stemmer S 2011 Appl. Phys. Lett. 99 232116
[29] Annadi A, Putra A, Srivastava A, Wang X, Huang Z, Liu Z Q, Venkatesan T and Ariando 2012 Appl. Phys. Lett. 101 231604
[30] Uccio U S d, Aruta C, Cantoni C, Gennaro E D, Gadaleta A, Lupini A R, Maccariello D, Marr D, Pallecchi I, Paparo D, Perna P, Riaz M and Granozio F M 2012 Condens. Matter: Mater. Sci. arXiv: 1206.5083 [cond-mat.mtrl-sci]
[31] Gunkel F, Skaja K, Shkabko A, Dittmann R, Hoffmann-Eifert S and Waser R 2013 Appl. Phys. Lett. 102 071601
[32] Li C, Xu Q F, Wen Z, Zhang S T, Li A D and Wu D 2013 Appl. Phys. Lett. 103 201602
[33] Kalabukhov A, Boikov Y A, Serenkov I T, Sakharov V I, Claeson T and Winkler D 2015 J. Phys.: Condes. Matter 27 255004
[34] Wong F J, Baek S H, Chopdekar R V, Mehta V V, Jang H W, Eom C B and Suzuki Y 2010 Phys. Rev. B 81 161101
[35] Wemple S H 1965 Phys. Rev. 137 A1575
[36] Zou K, Ismail-Beigi S, Kisslinger K, Shen X, Su D, Walker F J and Ahn C H 2015 APL Mater. 3 036104
[37] Zhang H, Zhang H, Yan X, Zhang X, Zhang Q, Zhang J, Han F, Gu L, Liu B, Chen Y, Shen B and Sun J 2017 ACS Appl. Mater. Interfaces 9 36456
[38] Zhang H, Yun Y, Zhang X, Zhang H, Ma Y, Yan X, Wang F, Li G, Li R, Khan T, Chen Y, Liu W, Hu F, Liu B, Shen B, Han W and Sun J 2018 Phys. Rev. Lett. 121 116803
[39] Wang Y Q, Tang W, Cheng J L, Behtash M and Yang K S 2016 ACS Appl. Mater. Interfaces 8 13659
[40] Koirala P, Gulec A and Marks L D 2017 Surf. Sci. 657 15
[41] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[42] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[43] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[44] Lee K S, Choi J H, Lee J Y and Baik S 2001 J. Appl. Phys. 90 4095
[45] Annadi A, Putra A, Liu Z Q, Wang X, Gopinadhan K, Huang Z, Dhar S, Venkatesan T and Ariando 2012 Phys. Rev. B 86 085450
[46] Yang K, Nazir S, Behtash M and Cheng J L 2016 Sci. Rep. 6 9
[47] Wang F N, Li J C, Du Y L, Zhang X H, Liu H Z, Liu J, Wang C L and Mei L M 2015 Appl. Surf. Sci. 355 1316
[48] Wang F N, Li J C, Zhang X M, Liu J, Zhao M L, Su W B, Wang C L and Mei L M 2018 Comput. Mater. Sci. 147 87
[49] Xu Q F, Wu D and Li A D 2013 Phys. Lett. A 377 577
[50] Zhong W, King-Smith R D and Vanderbilt D 1994 Phys. Rev. Lett. 72 3618
[51] Behtash M, Nazir S, Wang Y Q and Yang K S 2016 Phys. Chem. Chem. Phys. 18 6831
[52] Nazir S, Cheng J L, Behtash M, Luo J and Yang K S 2015 ACS Appl. Mater. Interfaces 7 14294
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Interface-induced topological phase and doping-modulated bandgap of two-dimensioanl graphene-like networks
Ningjing Yang(杨柠境), Hai Yang(杨海), and Guojun Jin(金国钧). Chin. Phys. B, 2023, 32(1): 017201.
[12] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[13] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[14] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[15] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
No Suggested Reading articles found!