Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020701    DOI: 10.1088/1674-1056/28/2/020701
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
TOPICAL REVIEW—Photodetector: materials, physics, and applications Prev   Next  

Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots

Jinming Hu(胡津铭)1,2, Yuansheng Shi(史源盛)1,2, Zhenheng Zhang(张珍衡)1,2, Ruonan Zhi(智若楠)1,2, Shengyi Yang(杨盛谊)1,2, Bingsuo Zou(邹炳锁)1,2
1 Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Key Laboratory of Advanced Optoelectronic Quantum Design and Measurement, Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
Abstract  Commercial photodetectors based on silicon are extensively applied in numerous fields. Except for their high performance, their maximum absorption wavelength is not over than 1100 nm and incident light with longer wavelengths cannot be detected; in addition, their cost is high and their manufacturing process is complex. Therefore, it is meaningful and significant to extend absorption wavelength, to decrease cost, and to simplify the manufacturing process while maintaining high performance for photodetectors. Due to the properties of size-dependent bandgap tunability, low cost, facile processing, and substrate compatibility, solution-processed colloidal quantum dots (CQDs) have recently gained significant attention and become one of the most competitive and promising candidates for optoelectronic devices. Among these CQDs, lead chalcogenide CQDs are getting very prominent and are widely investigated. In this paper, the recent progress of infrared (IR) photodetectors based on lead sulfide (PbS), lead selenide (PbSe), and ternary PbSxSe1-x CQDs, and their underlying concepts, breakthroughs, and remaining challenges are reviewed, thus providing guidance for designing high-performance quantum-dot IR photodetectors.
Keywords:  colloidal quantum dots      lead chalcogenide      infrared photodetectors      nanocrystals  
Received:  28 August 2018      Revised:  19 December 2018      Accepted manuscript online: 
PACS:  07.57.Kp (Bolometers; infrared, submillimeter wave, microwave, and radiowave receivers and detectors)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
Fund: Project supported by the Fund from the State Key Laboratory of Transducer Technology, China (Grant No. SKT1404) and the Fund from the Key Laboratory of Photoelectronic Imaging Technology and System (Grant No. 2017OEIOF02) at Beijing Institute of Technology, Ministry of Education of China.
Corresponding Authors:  Shengyi Yang, Bingsuo Zou     E-mail:  syyang@bit.edu.cn;zoubs@bit.edu.cn

Cite this article: 

Jinming Hu(胡津铭), Yuansheng Shi(史源盛), Zhenheng Zhang(张珍衡), Ruonan Zhi(智若楠), Shengyi Yang(杨盛谊), Bingsuo Zou(邹炳锁) Recent progress of infrared photodetectors based on lead chalcogenide colloidal quantum dots 2019 Chin. Phys. B 28 020701

[1] Konstantatos G and Sargent E H 2010 Nat. Nanotechnol. 5 391
[2] Ellingson R J, Beard M C, Johnson J C, Yu P, Micic O I, Nozik A J, Shabaev A and Efros A L 2005 Nano Lett. 5 865
[3] McDonald S A, Konstantatos G, Zhang S, Cyr P W, Klem E J, Levina L and Sargent E H 2005 Nat. Mater. 4 138
[4] Tang J, Kemp K W, Hoogl, S, Jeong K S, Liu H, Levina L, Furukawa M, Wang X, Debnath R, Cha D, Chou K W, Fischer A, Amassian A, Asbury J B and Sargent E H 2011 Nat. Mater. 10 765
[5] Sargent E H 2012 Nat. Photon. 6 133
[6] Ip A H, Thon S M, Hoogl, S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A and Sargent E H 2012 Nat. Nanotechnol. 7 577
[7] Ning Z, Voznyy O, Pan J, Hoogl, S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherl, B, Hill I, Amassian A, Liu H, Tang J, Bakr O M and Sargent E H 2014 Nat. Mater. 13 822
[8] Chuang C H, Brown P R, Bulovic V and Bawendi M G 2014 Nat. Mater. 13 796
[9] Mashford B S, Stevenson M, Popovic Z, Hamilton C, Zhou Z Q, Breen C, Steckel J, Bulovic V, Bawendi M, Coe-Sullivan S and Kazlas P T 2013 Nat. Photon. 7 407
[10] Shirasaki Y, Supran G J, Bawendi M G and Bulovic V 2013 Nat. Photon. 7 13
[11] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J and Peng X 2014 Nature 515 96
[12] Gong X W, Yang Z Y, Walters G, Comin R, Ning Z J, Beauregard E, Adinolfi V, Voznyy O and Sargent E H 2016 Nat. Photon. 10 253
[13] Osedach T P, Zhao N, Andrew T L, Brown P R, Wanger D D, Strasfeld D B, Chang L Y, Bawendi M G and Bulovic V 2012 ACS Nano 6 3121
[14] Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L, Liu Y, Crawford N, Hemminger J C and Law M 2013 Nano Lett. 13 1578
[15] Hetsch F, Zhao N, Kershaw S V and Rogach A L 2013 Mater. Today 16 312
[16] Adinolfi V and Sargent E H 2017 Nature 542 324
[17] Sukhovatkin V, Hinds S, Brzozowski L and Sargent E H 2009 Science 324 1542
[18] Pal B N, Robel I, Mohite A, Laocharoensuk R, Werder D J and Klimov V I 2012 Adv. Funct. Mater. 22 1741
[19] Saran R and Curry R J 2016 Nat. Photon. 10 81
[20] Efros A L and Rosen M 2000 Ann. Rev. Mater. Sci. 30 475
[21] Hines M A and Scholes G D 2003 Adv. Mater. 15 1844
[22] Yang Z, Wang M Q, Shi Y H, Song X H, Lin Z H, Ren Z Y and Bai J T 2012 J. Mater. Chem. 22 21009
[23] Park J, Joo J, Kwon S G, Jang Y and Hyeon T 2007 Angew. Chem. Int. Ed. Engl. 46 4630
[24] Thanh N T, Maclean N and Mahiddine S 2014 Chem. Rev. 114 7610
[25] Kumar S and Nann T 2006 Small 2 316
[26] Burda C, Chen X, Narayanan R and El-Sayed M A 2005 Chem. Rev. 105 1025
[27] Reiss H 1951 J. Chem. Phys. 19 482
[28] De Smet Y, Deriemaeker L and Finsy R 1997 Langmuir 13 6884
[29] Kwon S G, Piao Y, Park J, Angappane S, Jo Y, Hwang N M, Park J G and Hyeon T 2007 J. Am. Chem. Soc. 129 12571
[30] Weidman M C, Beck M E, Hoffman R S, Prins F and Tisdale W A 2014 ACS Nano 8 6363
[31] Brown P R, Kim D, Lunt R R, Zhao N, Bawendi M G, Grossman J C and Bulovic V 2014 ACS Nano 8 5863
[32] Talapin D V, Lee J S, Kovalenko M V and Shevchenko E V 2010 Chem. Rev. 110 389
[33] Carey G H, Abdelhady A L, Ning Z, Thon S M, Bakr O M and Sargent E H 2015 Chem. Rev. 115 12732
[34] de Mello Donega C 2011 Chem. Soc. Rev. 40 1512
[35] Clifford J P, Konstantatos G, Johnston K W, Hoogl, S, Levina L and Sargent E H 2009 Nat. Nanotechnol. 4 40
[36] Dong R, Bi C, Dong Q, Guo F, Yuan Y, Fang Y, Xiao Z and Huang J 2014 Adv. Opt. Mater. 2 549
[37] Lee J W, Kim D Y and So F 2015 Adv. Funct. Mater. 25 1233
[38] Petritz R L 1956 Phys. Rev. 104 1508
[39] Bube R H 1975 J. Electron. Mater. 4 991
[40] Nagpal P and Klimov V I 2011 Nat. Commun. 2 486
[41] Konstantatos G and Sargent E H 2007 Appl. Phys. Lett. 91 173505
[42] Bozyigit D, Volk S, Yarema O and Wood V 2013 Nano Lett. 13 5284
[43] Bozyigit D, Jakob M, Yarema O and Wood V 2013 ACS Appl. Mater. Inter. 5 2915
[44] Rose A 1963 Concept in Photoconductivity and Allied Problems (New York: Interscience Publishers) Vol. 19
[45] Bube R H and Ho C T 1966 J. Appl. Phys. 37 4132
[46] Espevik S, Wu C H and Bube R H 1971 J. Appl. Phys. 42 3513
[47] Zhitomirsky D, Voznyy O, Levina L, Hoogl, S, Kemp K W, Ip A H, Thon S M and Sargent E H 2014 Nat. Commun. 5 3803
[48] Chen H Y, Lo M K, Yang G, Monbouquette H G and Yang Y 2008 Nat. Nanotechnol. 3 543
[49] Guo F, Yang B, Yuan Y, Xiao Z, Dong Q, Bi Y and Huang J 2012 Nat. Nanotechnol. 7 798
[50] Kim D Y, Ryu J, Manders J, Lee J and So F 2014 ACS Appl. Mater. Inter. 6 1370
[51] Wei H, Fang Y, Yuan Y, Shen L and Huang J 2015 Adv. Mater. 27 4975
[52] Dereniak E L and Boreman G D 1996 Infrared Detectors and Systems (New York: Wiley)
[53] Jones R C 1953 Rev. Sci. Instrum. 24 1035
[54] Konstantatos G, Howard I, Fischer A, Hoogl, S, Clifford J, Klem E, Levina L and Sargent E H 2006 Nature 442 180
[55] McDonald S A, Cyr P W, Levina L and Sargent E H 2004 Appl. Phys. Lett. 85 2089
[56] Yu D, Wang C, Wehrenberg B L and Guyot-Sionnest P 2004 Phys. Rev. Lett. 92 216802
[57] Yang S, Zhao N, Zhang L, Zhong H, Liu R and Zou B 2012 Nanotechnology 23 255203
[58] Wang H W, Li Z X, Fu C J, Yang D, Zhang L, Yang S Y and Zou B S 2015 IEEE Photon. Technol. Lett. 27 612
[59] Sulaman M, Yang S Y, Bukhtiar A, Fu C J, Song T J, Wang H W, Wang Y S, Bo H, Tang Y and Zou B S 2016 RSC Adv. 6 87730
[60] Mourdikoudis S and Liz-Marzán L M 2013 Chem. Mater. 25 1465
[61] Remacle F 2000 J. Phys. Chem. A 104 4739
[62] Wang H W, Li W L, Huang Y L, Wang Y S, Yang S Y and Zou B S 2017 Mater. Lett. 187 136
[63] Wang H W, Yang S Y, Wang Y S, Xu J F, Huang Y L, Li W L, He B, Muhammad S, Jiang Y R, Tang Y and Zou B S 2017 Org. Electron. 42 309
[64] Xu J F, Wang H W, Wang Y S, Yang S Y, Ni G Q and Zou B S 2018 Org. Electron. 58 270
[65] Wang H, Wang Y, He B, Li W, Sulaman M, Xu J, Yang S, Tang Y and Zou B 2016 ACS Appl. Mater. Inter. 8 18526
[66] Wang R L, Shang Y Q, Kanjanaboos P, Zhou W J, Ning Z J and Sargent E H 2016 Energ. Environ. Sci. 9 1130
[67] Kovalenko M V, Scheele M and Talapin D V 2009 Science 324 1417
[68] Milliron D J 2014 Nat. Mater. 13 772
[69] Yakunin S, Dirin D N, Protesescu L, Sytnyk M, Tollabimazraehno S, Humer M, Hackl F, Fromherz T, Bodnarchuk M I, Kovalenko M V and Heiss W 2014 ACS Nano 8 12883
[70] Hu C, Gassenq A, Justo Y, Devloo-Casier K, Chen H T, Detavernier C, Hens Z and Roelkens G 2014 Appl. Phys. Lett. 105 171110
[71] Gao Y, Aerts M, Sandeep C S, Talgorn E, Savenije T J, Kinge S, Siebbeles L D and Houtepen A J 2012 ACS Nano 6 9606
[72] Zhitomirsky D, Furukawa M, Tang J, Stadler P, Hoogl, S, Voznyy O, Liu H and Sargent E H 2012 Adv. Mater. 24 6181
[73] Garcia de Arquer F P, Lasanta T, Bernechea M and Konstantatos G 2015 Small 11 2636
[74] Kim Y, Cho S, Jeong S, Ko D H, Ko H, You N, Chang M, Reichmanis E, Park J Y, Park S Y, Lee J S, Yang H, In I and Park B 2014 Chem. Mater. 26 6393
[75] He J G, Qiao K K, Gao L, Song H S, Hu L, Jiang S L, Zhong J and Tang J 2014 ACS Photon. 1 936
[76] Osedach T P, Zhao N, Geyer S M, Chang L Y, Wanger D D, Arango A C, Bawendi M C and Bulovic V 2010 Adv. Mater. 22 5250
[77] Szendrei K, Cordella F, Kovalenko M V, Boberl M, Hesser G, Yarema M, Jarzab D, Mikhnenko O V, Gocalinska A, Saba M, Quochi F, Mura A, Bongiovanni G, Blom P W M, Heiss W G and Loi M A 2009 Adv. Mater. 21 683
[78] Saran R, Nordin M N and Curry R J 2013 Adv. Funct. Mater. 23 4149
[79] Saran R, Stolojan V and Curry R J 2015 Sci. Rep. 4 5041
[80] Gocalinska A, Saba M, Quochi F, Marceddu M, Szendrei K, Gao J, Loi M A, Yarema M, Seyrkammer R, Heiss W, Mura A and Bongiovanni G 2010 J. Phys. Chem. Lett. 1 1149
[81] El-Ballouli A O, Alarousu E, Bernardi M, Aly S M, Lagrow A P, Bakr O M and Mohammed O F 2014 J. Am. Chem. Soc. 136 6952
[82] Klem E, Lewis J, Gregory C, Cunningham G, Temple D, D'Souza A, Robinson E, Wijewarnasuriya P S and Dhar N SPIE Optical Engineering + Applications p. 6
[83] Noone K M, Subramaniyan S, Zhang Q F, Cao G Z, Jenekhe S A and Ginger D S 2011 J. Phys. Chem. C 115 24403
[84] Pelayo García de Arquer F, Beck F J, Bernechea M and Konstantatos G 2012 Appl. Phys. Lett. 100 043101
[85] Beck F J, de Arquer F P G, Bernechea M and Konstantatos G 2012 Appl. Phys. Lett. 101 041103
[86] He J G, Luo M, Hu L, Zhou Y L, Jiang S L, Song H S, Ye R, Chen J, Gao L and Tang J 2014 J. Alloys Compd. 596 73
[87] Sulaman M, Yang S Y, Bukhtiar A, Fu C J, Song T J, Wang H W, Wang Y S, Bo H, Tang Y and Zou B S 2016 RSC Adv. 6 44514
[88] Song T, Cheng H, Fu C, He B, Li W, Xu J, Tang Y, Yang S and Zou B 2016 Nanotechnology 27 165202
[89] Sun Z, Liu Z, Li J, Tai G A, Lau S P and Yan F 2012 Adv. Mater. 24 5878
[90] Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F and Koppens F H L 2012 Nat. Nanotechnol. 7 363
[91] Turyanska L, Makarovsky O, Svatek S A, Beton P H, Mellor C J, Patane A, Eaves L, Thomas N R, Fay M W, Marsden A J and Wilson N R 2015 Adv. Electron. Mater. 1 1500062
[92] Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H and Konstantatos G 2015 Adv. Mater. 27 176
[93] Song X X, Zhang Y T, Zhang H T, Yu Y, Cao M X, Che Y L, Wang J L, Yang J B, Ding X and Yao J Q 2016 Mater. Lett. 178 52
[94] Sirringhaus H, Tessler N and Friend R H 1998 Science 280 1741
[95] Dodabalapur A, Bao Z, Makhija A, Laquindanum J G, Raju V R, Feng Y, Katz H E and Rogers J 1998 Appl. Phys. Lett. 73 142
[96] Adinolfi V, Kramer I J, Labelle A J, Sutherl, B R, Hoogl, S and Sargent E H 2015 ACS Nano 9 356
[97] Yoo J, Jeong S, Kim S and Je J H 2015 Adv. Mater. 27 1712
[98] Rauch T, Boberl M, Tedde S F, Furst J, Kovalenko M V, Hesser G N, Lemmer U, Heiss W and Hayden O 2009 Nat. Photon. 3 332
[99] Dong R, Bi C, Dong Q F, Guo F W, Yuan Y B, Fang Y J, Xiao Z G and Huang J S 2014 Adv. Opt. Mater. 2 549
[100] Kim J Y, Adinolfi V, Sutherl, B R, Voznyy O, Kwon S J, Kim T W, Kim J, Ihee H, Kemp K, Adachi M, Yuan M, Kramer I, Zhitomirsky D, Hoogl, S and Sargent E H 2015 Nat. Commun. 6 7772
[101] Sulaman M, Yang S, Jiang Y, Tang Y and Zou B (unpublished)
[102] Manders J R, Lai T H, An Y B, Xu W K, Lee J, Kim D Y, Bosman G and So F 2014 Adv. Funct. Mater. 24 7205
[103] Jiang Z, Hu W, Mo C, Liu Y, Zhang W, You G, Wang L, Atalla M R, Zhang Y, Liu J, Kurhade K K and Xu J 2015 Nanoscale 7 16195
[104] Abbas M M, Kostiuk T and Ogilvie K W 1976 Appl. Opt. 15 961
[105] Tan M C, Al-Baroudi L and Riman R E 2011 ACS Appl. Mater. Inter. 3 3910
[106] Arnaoutakis G E and Richards B S 2018 Opt. Mater. 83 47
[107] Hsieh C C, Wu C Y, Jih F W and Sun T P 1997 IEEE T. Circ. Syst. Vid. 7 594
[108] Challenor M, Gong P, Lorenser D, Fitzgerald M, Dunlop S, Sampson D D and Iyer K S 2013 ACS Appl. Mater. Inter. 5 7875
[109] Yu H, Kim D, Lee J, Baek S, Lee J, Singh R and So F 2016 Nat. Photon. 10 129
[110] Chen J, Ban D, Helander M G, Lu Z H and Poole P 2010 Adv. Mater. 22 4900
[111] Chu X, Guan M, Niu L, Zeng Y, Li Y, Zhang Y, Zhu Z and Wang B 2014 ACS Appl. Mater. Inter. 6 19011
[112] Li X M, Zhang F and Zhao D Y 2013 Nano Today 8 643
[113] Guan M, Li L S, Cao G H, Zhang Y, Wang B Q, Chu X B, Zhu Z P and Zeng Y P 2011 Org. Electron. 12 2090
[114] Chen J, Tao J, Ban D, Helander M G, Wang Z, Qiu J and Lu Z 2012 Adv. Mater. 24 3138
[115] Chen J, Ban D Y, Feng X D, Lu Z H, Fathololoumi S, SpringThorpe A J and Liu H C 2008 J. Appl. Phys. 103 103112
[116] Chen J, Ban D Y, Helander M G, Lu Z H, Graf M, Poole P and Liu H C 2009 IEEE Photon. Technol. Lett. 21 1447
[117] Kim D Y, Choudhury K R, Lee J W, Song D W, Sarasqueta G and So F 2011 Nano Lett. 11 2109
[1] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[2] Tuning energy transfer efficiency in quantum dots mixture by controling donor/acceptor ratio
Chang Liu(刘畅), Jing Liang(梁晶), Fangfang Wang(王芳芳), Chaojie Ma(马超杰), Kehai Liu(刘科海), Can Liu(刘灿), Hao Hong(洪浩), Huaibin Shen(申怀彬), Kaihui Liu(刘开辉), and Enge Wang(王恩哥). Chin. Phys. B, 2021, 30(12): 127802.
[3] Growth and aggregation of Cu nanocrystals on ionic liquid surfaces
Jia-Wei Shen(沈佳伟), Xun-Heng Ye(叶迅亨), Zhi-Long Bao(鲍志龙), Lu Li(李璐), Bo Yang(杨波), Xiang-Ming Tao(陶向明), Gao-Xiang Ye(叶高翔). Chin. Phys. B, 2020, 29(6): 066801.
[4] A low-dimensional crystal growth model on an isotropic and quasi-free sustained substrate
Chenxi Lu(卢晨曦), Senjiang Yu(余森江), Lingwei Li(李领伟), Bo Yang(杨波), Xiangming Tao(陶向明), Gaoxiang Ye(叶高翔). Chin. Phys. B, 2020, 29(3): 038101.
[5] Photoluminescence changes of C70 nanotubes induced by laser irradiation
Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼). Chin. Phys. B, 2020, 29(10): 104209.
[6] Progress in quantum well and quantum cascade infrared photodetectors in SITP
Xiaohao Zhou(周孝好), Ning Li(李宁), Wei Lu(陆卫). Chin. Phys. B, 2019, 28(2): 027801.
[7] Near-infrared lead chalcogenide quantum dots: Synthesis and applications in light emitting diodes
Haochen Liu(刘皓宸), Huaying Zhong(钟华英), Fankai Zheng(郑凡凯), Yue Xie(谢阅), Depeng Li(李德鹏), Dan Wu(吴丹), Ziming Zhou(周子明), Xiao-Wei Sun(孙小卫), Kai Wang(王恺). Chin. Phys. B, 2019, 28(12): 128504.
[8] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[9] Increase of photoluminescence blinking frequency of 3C-SiC nanocrystals with excitation power
Zhixing Gan(甘志星), Weiping Zhou(周卫平), Ming Meng(孟明). Chin. Phys. B, 2018, 27(12): 127804.
[10] Polymer waveguide thermo-optical switch with loss compensation based on NaYF4: 18% Yb3+, 2% Er3+ nanocrystals
Gui-Chao Xing(邢桂超), Mei-Ling Zhang(张美玲), Tong-He Sun(孙潼鹤), Yue-Wu Fu(符越吾), Ya-Li Huang(黄雅莉), Jian Shao(邵健), Jing-Rong Liu(刘静蓉), Fei Wang(王菲), Da-Ming Zhang(张大明). Chin. Phys. B, 2018, 27(11): 114218.
[11] Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices
Jie Yu(于杰), Kun-ji Chen(陈坤基), Zhong-yuan Ma(马忠元), Xin-xin Zhang(张鑫鑫), Xiao-fan Jiang(江小帆), Yang-qing Wu(吴仰晴), Xin-fan Huang(黄信凡), Shunri Oda. Chin. Phys. B, 2016, 25(9): 097304.
[12] Band gap anomaly and topological properties in lead chalcogenides
Simin Nie(聂思敏), Xiao Yan Xu(许霄琰), Gang Xu(徐刚), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(3): 037311.
[13] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠). Chin. Phys. B, 2015, 24(6): 067306.
[14] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[15] Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁). Chin. Phys. B, 2014, 23(7): 076102.
No Suggested Reading articles found!