Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 080302    DOI: 10.1088/1674-1056/27/8/080302
GENERAL Prev   Next  

Dynamical effects of switching a super-critical well potential on pair creation from a vacuum

Qiang Wang(王强)1, Qin-Zhi Xia(夏勤智)1, Jie Liu(刘杰)3, Li-Bin Fu(傅立斌)2,3
1 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
2 Graduate School, China Academy of Engineering Physics, Beijing 100088, China;
3 CAPT, HEDPS, and IFSA Collaborative Innovation Center of the Ministry of Education, Peking University, Beijing 100871, China
Abstract  

The dynamical effects on electron-positron pair creation from a vacuum caused by the switching processes of a super-critical well potential are investigated in detail. The results show that only when the switching on and switching off time both increase will the final pair yield converge to the integer of embedded bound states nearly exponentially. But a single adiabatic switching on or switching off cannot lead to an integer pair yield. If the potential is turned on abruptly, associated with the discrete and embedded bound states, there is multi-frequency oscillation around the pair number's saturation. The slowly switching on can suppress the amplitude of this oscillation and reduce the final pair yield. The switching off can also reduce the final pair number in the same order of magnitude. The evolution of a single-pair number shows a robust long range correlation between particle and antiparticle. For an adiabatic switching case, the single-pair dominates the early pair creation, their upper limit value is equal to the integer, and these single-pairs will totally disentangle during the switching off.

Keywords:  electron-positron pair creation      dynamical effect  
Received:  23 March 2018      Revised:  07 May 2018      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Pm (Relativistic wave equations)  
  03.70.+k (Theory of quantized fields)  
  12.20.Ds (Specific calculations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11725417 and 11575027), NSAF (Grant No. U1730449), and the Science Challenge Project (Grant No. TZ2018005).

Corresponding Authors:  Li-Bin Fu     E-mail:  lbfu@iapcm.ac.cn

Cite this article: 

Qiang Wang(王强), Qin-Zhi Xia(夏勤智), Jie Liu(刘杰), Li-Bin Fu(傅立斌) Dynamical effects of switching a super-critical well potential on pair creation from a vacuum 2018 Chin. Phys. B 27 080302

[1] Greiner W, Müller B and Rafelski J 1985 Quantum Electrodynamics of Strong Fields (Berlin: Springer-Verlag)
[2] Belkacem A, Gould H, Feinberg B, Bossingham R and Meyerhof W E 1993 Phys. Rev. Lett. 71 1514
[3] Burke D L, et al. 1997 Phys. Rev. Lett. 79 1626
[4] Di Piazza A, Müller C, Hatsagortsyan K Z and Keitel C H 2012 Rev. Mod. Phys. 84 1177
[5] Krekora P, Cooley K, Su Q and Grobe R 2005 Phys. Rev. Lett. 95 070403
[6] Lv Q Z, Liu Y, Li Y J, Grobe R and Su Q 2013 Phys. Rev. Lett. 111 183204
[7] Liu Y, Jiang M, Lv Q Z, Li Y T, Grobe R and Su Q 2014 Phys. Rev. A 89 012127
[8] Lv Q Z, Liu Y, Li Y J, Grobe R and Su Q 2014 Phys. Rev. A 90 013405
[9] Zuo T and Bandrauk A D 1995 Phys. Rev. A 52 R2511
[10] Wu J, Meckel M, Schmidt L Ph H, Kunitski M, Voss S, Sann H, Kim H, Jahnke T, Czasch A and Dörner R 2013 Nat Commun. 3 1113
[11] Xu H, He F, Kielpinski D, Sang R T and Litvinyuk I V 2015 Sci. Rep. 5 13527
[12] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[13] Fillion-Gourdeau F, Lorin E and Bandrauk A D 2013 Phys. Rev. Lett. 110 013002
[14] Cheng T, Su Q and Grobe R 2010 Contemp. Phys. 51 315
[15] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 93 043004
[16] Krekora P, Su Q and Grobe R 2004 Phys. Rev. Lett. 92 040406
[17] Mocken G R and Keitel C H 2004 J. Comput. Phys. 199 558
[18] Mocken G R and Keitel C H 2008 Comput. Phys. Commun. 178 868
[19] Wang Q, Liu J and Fu L B 2016 Sci. Rep. 6 25292
[20] Gerry C C, Su Q and Grobe R 2006 Phys. Rev. A 74 044103
[21] Liu Y, Lv Q Z, Li Y T, Grobe R and Su Q 2015 Phys. Rev. A 91 052123
[22] Krekora P, Cooley K, Su Q and Grobe R 2005 Laser Phys. 15 282
[23] Smolyansky S A, Röpke G, Schmidt S, Blaschke D, Toneev V D and Prozorkevich A V 1997 arXiv: hep-ph/9712377
[24] Schmidt S, Blaschke D, Röpke G, Smolyansky S, Prozorkevich A and Toneev V 1998 Int. J. Mod. Phys. E 07 709
[1] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[2] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[5] Structure of continuous matrix product operator for transverse field Ising model: An analytic and numerical study
Yueshui Zhang(张越水) and Lei Wang(王磊). Chin. Phys. B, 2022, 31(11): 110205.
[6] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[7] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[8] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[9] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[10] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[11] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[12] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[13] Theoretical study of (e, 2e) triple differential cross sections of pyrimidine and tetrahydrofurfuryl alcohol molecules using multi-center distorted-wave method
Yiao Wang(王亦傲), Zhenpeng Wang(王振鹏), Maomao Gong(宫毛毛), Chunkai Xu(徐春凯), and Xiangjun Chen(陈向军). Chin. Phys. B, 2022, 31(1): 010202.
[14] Topology of a parity-time symmetric non-Hermitian rhombic lattice
Shumai Zhang(张舒迈), Liang Jin(金亮), and Zhi Song(宋智). Chin. Phys. B, 2022, 31(1): 010312.
[15] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
No Suggested Reading articles found!