Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 078801    DOI: 10.1088/1674-1056/27/7/078801
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dependence of the solar cell performance on nanocarbon/Si heterojunctions

Shiqi Xiao(肖仕奇)1,3, Qingxia Fan(范庆霞)1,3, Xiaogang Xia(夏晓刚)1,3, Zhuojian Xiao(肖卓建)1,3, Huiliang Chen(陈辉亮)1,3, Wei Xi(席薇)1,3, Penghui Chen(陈鹏辉)1,3, Junjie Li(李俊杰)1,3, Yanchun Wang(王艳春)1,2,3, Huaping Liu(刘华平)1,2,3, Weiya Zhou(周维亚)1,2,3
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Beijing Key Laboratory for Advanced Functional Materials and Structure Research, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Solar cells that combine single-crystalline silicon (Si) with graphene (G) have been widely researched in order to develop next-generation photovoltaic devices. However, the power conversion efficiency (PCE) of G/Si solar cell without chemical doping is commonly low due to the relatively high resistance of graphene. In this work, through combining graphene with carbon nanotube (CNT) networks, we fabricated three kinds of hybrid nanocarbon film/Si heterojunction solar cells in order to increase the PCE of the graphene based Si solar cell. We investigated the characteristics of different nanocarbon film/Si solar cells and found that their performance depends on the heterojunctions. Specifically, a doping-free G-CNT/Si solar cell demonstrated a high PCE of 7.9%, which is nearly equal to the combined value of two individuals (G/Si and CNT/Si). This high efficiency is attributed to the synergistic effect of graphene and CNTs, and can be further increased to 9.1% after applying a PMMA antireflection coating. This study provides a potential way to further improve the Si based heterojunction solar cells.

Keywords:  carbon nanotube      graphene      heterojunction      silicon solar cell  
Received:  17 April 2018      Accepted manuscript online: 
PACS:  88.30.rh (Carbon nanotubes)  
  81.05.ue (Graphene)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  88.40.jj (Silicon solar cells)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0208402), the National Basic Research Program of China (Grant No. 2012CB932302), the National Natural Science Foundation of China (Grant Nos. 11634014, 51172271, and 51372269), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040202).

Corresponding Authors:  Weiya Zhou     E-mail:  wyzhou@iphy.ac.cn

Cite this article: 

Shiqi Xiao(肖仕奇), Qingxia Fan(范庆霞), Xiaogang Xia(夏晓刚), Zhuojian Xiao(肖卓建), Huiliang Chen(陈辉亮), Wei Xi(席薇), Penghui Chen(陈鹏辉), Junjie Li(李俊杰), Yanchun Wang(王艳春), Huaping Liu(刘华平), Weiya Zhou(周维亚) Dependence of the solar cell performance on nanocarbon/Si heterojunctions 2018 Chin. Phys. B 27 078801

[1] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R, Song Y I, Kim Y J, Kim K S, Ozyilmaz B, Ahn J H, Hong B H and Iijima S 2010 Nat. Nanotech. 5 574
[2] Wang Y, Tong S W, Xu X F, Ozyilmaz B and Loh K P 2011 Adv. Mater. 23 1514
[3] Park H, Brown P R, Bulovic V and Kong J 2012 Nano Lett. 12 133
[4] Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
[5] Jang H, Park Y J, Chen X, Das T, Kim M S and Ahn J H 2016 Adv. Mater. 28 4184
[6] Sun D M, Liu C, Ren W C and Cheng H M 2016 Adv. Electron. Mater. 2 1600229
[7] Li X, Zhu H, Wang K, Cao A, Wei J, Li C, Jia Y, Li Z, Li X and Wu D 2010 Adv. Mater. 22 2743
[8] Shi E, Li H, Yang L, Zhang L, Li Z, Li P, Shang Y, Wu S, Li X, Wei J, Wang K, Zhu H, Wu D, Fang Y and Cao A 2013 Nano Lett. 13 1776
[9] Li X, Lv Z and Zhu H 2015 Adv. Mater. 27 6549
[10] Li X, Xie D, Park H, Zeng T H, Wang K, Wei J, Zhong M, Wu D, Kong J and Zhu H 2013 Adv. Energy Mater. 3 1029
[11] Miao X, Tongay S, Petterson M K, Berke K, Rinzler A G, Appleton B R and Hebard A F 2012 Nano Lett. 12 2745
[12] Kozawa D, Hiraoka K, Miyauchi Y, Mouri S and Matsuda K 2012 Appl. Phys. Express 5 042304
[13] Kang J, Shin D, Bae S and Hong B H 2012 Nanoscale 4 5527
[14] Song Y, Li X, Mackin C, Zhang X, Fang W, Palacios T, Zhu H and Kong J 2015 Nano Lett. 15 2104
[15] Ho P H, Liou Y T, Chuang C H, Lin S W, Tseng C Y, Wang D Y, Chen C C, Hung W Y, Wen C Y and Chen C W 2015 Adv. Mater. 27 1724
[16] Xu W, Deng B, Shi E, Wu S, Zou M, Yang L, Wei J, Peng H and Cao A 2015 ACS Appl. Mater. Inter 7 17088
[17] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2012 Nano Lett. 12 414
[18] Cummings A W, Duong D L, Nguyen V L, Van Tuan D, Kotakoski J, Barrios Vargas J E, Lee Y H and Roche S 2014 Adv. Mater. 26 5079
[19] Li X, Xie D, Park H, Zhu M, Zeng T H, Wang K, Wei J, Wu D, Kong J and Zhu H 2013 Nanoscale 5 1945
[20] Lin X, Liu P, Wei Y, Li Q, Wang J, Wu Y, Feng C, Zhang L, Fan S and Jiang K 2013 Nat. Commun. 4 2920
[21] Yan Z, Peng Z, Casillas G, Lin J, Xiang C, Zhou H, Yang Y, Ruan G, Raji A R O, Samuel E L G, Hauge R H, Yacaman M J and Tour J M 2014 ACS Nano 8 5061
[22] Kim S H, Song W, Jung M W, Kang M A, Kim K, Chang S J, Lee S S, Lim J, Hwang J, Myung S and An K S 2014 Adv. Mater. 26 4247
[23] Kholmanov I N, Magnuson C W, Piner R, Kim J Y, Aliev A E, Tan C, Kim T Y, Zakhidov A A, Sberveglieri G, Baughman R H and Ruoff R S 2015 Adv. Mater. 27 3053
[24] Wang R, Hong T and Xu Y Q 2015 ACS Appl. Mater. Inter 7 5233
[25] Pulfrey D L 1978 IEEE Trans. Electron. Devices 25 1308
[26] Jung Y, Li X, Rajan N K, Taylor A D and Reed M A 2013 Nano Lett. 13 95
[27] Cui K, Anisimov A S, Chiba T, Fujii S, Kataura H, Nasibulin A G, Chiashi S, Kauppinen E I and Maruyama S 2014 J. Mater. Chem. A 2 11311
[28] He J, Gao P, Yang Z, Yu J, Yu W, Zhang Y, Sheng J, Ye J, Amine J C and Cui Y 2017 Adv. Mater. 29
[29] Fan Q, Zhang Q, Zhou W, Xia X, Yang F, Zhang N, Xiao S, Li K, Gu X, Xiao Z, Chen H, Wang Y, Liu H, Zhou W and Xie S 2017 Nano Energy 33 436
[30] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[31] Fan Q, Zhang Q, Zhou W, Yang F, Zhang N, Xiao S, Gu X, Xiao Z, Chen H, Wang Y, Liu H and Zhou W 2017 Chin. Phys. B 26 028801
[32] Shi E, Li H, Yang L, Hou J, Li Y, Li L, Cao A and Fang Y 2015 Adv. Mater. 27 682
[33] Ferrari A C and Basko D M 2013 Nat. Nanotech. 8 235
[34] Griep M H, Sandoz-Rosado E, Tumlin T M and Wetzel E 2016 Nano Lett. 16 1657
[35] Jia Y, Li P, Gui X, Wei J, Wang K, Zhu H, Wu D, Zhang L, Cao A and Xu Y 2011 Appl. Phys. Lett. 98 133115
[36] Shi E, Li H, Xu W, Wu S, Wei J, Fang Y and Cao A 2015 Nano Energy 17 216
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[7] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[8] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[9] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[10] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[11] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[12] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[13] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[14] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[15] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
No Suggested Reading articles found!