Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077303    DOI: 10.1088/1674-1056/27/7/077303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices

Guo-Cai Wang(王国才)1,2, Liang-Mei Wu(吴良妹)1,2, Jia-Hao Yan(严佳浩)1,2, Zhang Zhou(周璋)1,2, Rui-Song Ma(马瑞松)1,2, Hai-Fang Yang(杨海方)1,2, Jun-Jie Li(李俊杰)1,2, Chang-Zhi Gu(顾长志)1,2, Li-Hong Bao(鲍丽宏)1,2, Shi-Xuan Du(杜世萱)1,2, Hong-Jun Gao(高鸿钧)1,2
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Heterostructures from mechanically-assembled stacks of two-dimensional materials allow for versatile electronic device applications. Here, we demonstrate the intrinsic charge transport behaviors in graphene-black phosphorus heterojunction devices under different charge carrier densities and temperature regimes. At high carrier densities or in the ON state, tunneling through the Schottky barrier at the interface between graphene and black phosphorus dominates at low temperatures. With temperature increasing, the Schottky barrier at the interface is vanishing, and the channel current starts to decrease with increasing temperature, behaving like a metal. While at low carrier densities or in the OFF state, thermal emission over the Schottky barrier at the interface dominates the carriers transport process. A barrier height of ~67.3 meV can be extracted from the thermal emission-diffusion theory.

Keywords:  black phosphorus      heterojunction      contact      barrier height  
Received:  29 March 2018      Revised:  16 April 2018      Accepted manuscript online: 
PACS:  73.40.Gk (Tunneling)  
  73.40.Ei (Rectification)  
  73.40.Cg (Contact resistance, contact potential)  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CBA01600), the National Key Research & Development Project of China (Grant No. 2016YFA0202300), the National Natural Science Foundation of China (Grant Nos. 61474141, 61674170, 61335006, 61390501, 51325204, and 51210003), Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 20150005), and the China Postdoctoral Science Foundation (Grant No. 2017M623146).

Corresponding Authors:  Li-Hong Bao     E-mail:  lhbao@iphy.ac.cn

Cite this article: 

Guo-Cai Wang(王国才), Liang-Mei Wu(吴良妹), Jia-Hao Yan(严佳浩), Zhang Zhou(周璋), Rui-Song Ma(马瑞松), Hai-Fang Yang(杨海方), Jun-Jie Li(李俊杰), Chang-Zhi Gu(顾长志), Li-Hong Bao(鲍丽宏), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧) Intrinsic charge transport behaviors in graphene-black phosphorus van der Waals heterojunction devices 2018 Chin. Phys. B 27 077303

[1] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[2] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[3] Schwierz F 2010 Nat. Nanotechnol. 5 487
[4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[5] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K and Colombo L 2014 Nat. Nanotechnol. 9 768
[6] Guo H, Lu H L, Huang L, Wang X Y, Lin X, Wang Y L, Du S X and Gao H J 2017 Acta Phys. Sin. 66 216803 (in Chinese)
[7] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[8] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz F, Hong S S, Huang J and Ismach A F 2013 ACS Nano 7 2898
[9] Liu Y, Wu H, Cheng H C, Yang S, Zhu E B, He Q Y, Ding M N, Li D H, Guo J, Weiss N O, Huang Y and Duan X F 2015 Nano Lett. 15 3030
[10] Shim J and Park J H 2016 Org. Electron. 33 172
[11] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[12] Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611
[13] Su W J, Chang H C, Shih Y T, Wang Y P, Hsu H P, Huang Y S and Lee K Y 2016 J. Alloys Compd. 671 276
[14] Moriya R, Yamaguchi T, Inoue Y, Morikawa S, Sata Y, Masubuchi S and Machida T 2014 Appl. Phys. Lett. 105 083119
[15] Yoon J, Park W, Bae G Y, Kim Y, Jang H S, Hyun Y, Lim S K, Kahng Y H, Hong W K and Lee B H 2013 Small 9 3295
[16] Das S, Gulotty R, Sumant A V and Roelofs A 2014 Nano Lett. 14 2861
[17] Guan J, Zhu Z and Tomanek D 2014 ACS Nano 8 12763
[18] Zhu W, Yogeesh M N, Yang S, Aldave S H, Kim J S, Sonde S, Tao L, Lu N and Akinwande D 2015 Nano Lett. 15 1883
[19] Jiang J W and Park H S 2014 J. Phys. D:Appl. Phys. 47 385304
[20] Das S, Zhang W, Demarteau M, Hoffmann A, Dubey M and Roelofs A 2014 Nano Lett. 14 5733
[21] Pan D X, Wang T C and Guo W L 2015 Chin. Phys. B 24 86401
[22] Yan S L, Xie Z J, Chen J H, Taniguchi T and Watanabe K J 2017 Chin. Phys. Lett. 34 047304
[23] Qiao J S, Kong X, Hu Z X, Yang F and Ji W 2014 Nat. Commun. 5 4475
[24] Baba M, Nakamura Y, Takeda Y, Shibata K, Morita A, Koike Y and Fukase T 1992 J. Phys.:Condens. Matter 4 1535
[25] Wang H, Wang X M, Xia F N, Wang L H, Jiang H, Xia Q F, Chin M L, Dubey M and Han S J 2014 Nano Lett. 14 6424
[26] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K and Gorbachev R V 2015 Nano Lett. 15 4914
[27] Liu H, Neal A T, Si M W, Du Y C and Ye P D 2014 IEEE Electron. Device Lett. 35 795
[28] Luo X, Rahbarihagh Y, Hwang J C M, Liu H, Du Y C and Ye P D 2014 IEEE Electron. Device Lett. 35 1314
[29] Avsar A, Vera-Marun I J, Tan J Y, Watanabe K, Taniguchi T, Castro Neto A H and Ozyilmaz B 2015 ACS Nano 9 4138
[30] Qiao J S, L Z and Ji W 2017 Chin. Phys. B 26 36803
[31] Castellanos-Gomez A 2015 J. Phys. Chem. Lett. 6 4280
[32] Gillgren N, Wickramaratne D, Shi Y M, Espiritu T, Yang J W, Hu J, Wei J, Liu X, Mao Z Q, Watanabe K, Taniguchi T, Bockrath M, Barlas Y, Lake R K and Lau C N 2015 2D Mater. 2 011001
[33] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D and Ye P D 2014 ACS Nano 8 4033
[34] Koenig S P, Doganov R A, Schmidt H, Castro Neto A H and Zyilmaz B 2014 Appl. Phys. Lett. 104 103106
[35] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[36] Li X F, Xiong X and Wu Y Q 2017 Chin. Phys. B 26 37307
[37] Du Y C, Liu H, Deng Y X and Ye P D 2014 ACS Nano 8 10035
[38] Das S, Demarteau M and Roelofs A 2014 ACS Nano 8 11730
[39] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[40] Guo W, Jing F, Xiao J, Zhou C, Lin Y W and Wang S 2016 Adv. Mater. 28 3152
[41] Wang G C, Bao L H, Pei T F, Ma R S, Zhang Y Y, Sun L L, Zhang G Y, Yang H F, Li J J, Gu C Z, Du S X, Pantelides S T, Schrimpf R D and Gao H J 2016 Nano Lett. 16 6870
[42] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[43] Kang J, Jariwala D, Ryder C R, Wells S A, Choi Y, Hwang E, Cho J H, Marks T J and Hersam M C 2016 Nano Lett. 16 2580
[44] Sze S M and Ng K K 2006 Physics of Semiconductor Devices (New York:John Wiley & Sons) p. 134
[45] Saito Y and Iwasa Y 2015 ACS Nano 9 3192
[1] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[5] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[6] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[7] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[10] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[11] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[12] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[13] Effects of heterogeneous adoption thresholds on contact-limited social contagions
Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟). Chin. Phys. B, 2022, 31(6): 068906.
[14] Evolution of surfaces and mechanisms of contact electrification between metals and polymers
Lin-Feng Wang(王林锋), Yi Dong(董义), Min-Hao Hu(胡旻昊), Jing Tao(陶静), Jin Li(李进), and Zhen-Dong Dai(戴振东). Chin. Phys. B, 2022, 31(6): 066202.
[15] Water contact angles on charged surfaces in aerosols
Yu-Tian Shen(申钰田), Ting Lin(林挺), Zhen-Ze Yang(杨镇泽), Yong-Feng Huang(黄永峰), Ji-Yu Xu(徐纪玉), and Sheng Meng(孟胜). Chin. Phys. B, 2022, 31(5): 056801.
No Suggested Reading articles found!