Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077301    DOI: 10.1088/1674-1056/27/7/077301
RAPID COMMUNICATION Prev   Next  

Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope

Chaoyu Guo(郭钞宇)1, Xiangzhi Meng(孟祥志)1, Qin Wang(王钦)1, Ying Jiang(江颖)1,2,3
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China;
2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China;
3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The plasmon-enhanced light emission of rutile TiO2(110) surface has been investigated by a low-temperature scanning tunneling microscope (STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO2. By performing differential conductance (dI/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO2(110) towards the Femi level (EF) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.

Keywords:  scanning tunneling microscopy      light emission      TiO2      plasmon  
Received:  25 May 2018      Accepted manuscript online: 
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  74.55.+v (Tunneling phenomena: single particle tunneling and STM)  
  78.60.Fi (Electroluminescence)  
Fund: 

Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0300901 and 2017YFA0205003), the National Natural Science Foundation of China (Grant Nos. 11634001 and 21725302), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-1).

Corresponding Authors:  Ying Jiang     E-mail:  yjiang@pku.edu.cn

Cite this article: 

Chaoyu Guo(郭钞宇), Xiangzhi Meng(孟祥志), Qin Wang(王钦), Ying Jiang(江颖) Image charge effect on the light emission of rutile TiO2(110) induced by a scanning tunneling microscope 2018 Chin. Phys. B 27 077301

[1] Gimzewski J K, Sass J K, Schlitter R R and Schott J 1989 Europhys. Lett. 8 435
[2] Downes A and Well and M E 1998 Phys. Rev. Lett. 81 1857
[3] Aizpurua J, Apell S P and Berndt R 2000 Phys. Rev. B 62 2065
[4] Qiu X H, Nazin G V and Ho W 2003 Science 299 542
[5] Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L and Hou J G 2010 Nat. Photon. 4 50
[6] Krane N, Lotze C, Lager J M, Reecht G and Franke K J 2016 Nano Lett. 16 5163
[7] Berndt R, Gimzewski J K and Johansson P 1991 Phys. Rev. Lett. 67 3796
[8] Suzuki Y, Minoda H and Yamamoto N 1999 Surf. Sci. 438 297
[9] Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S and Mashiko S 2004 Phys. Rev. Lett. 92 086801
[10] Wu S W, Nazin G V and Ho W 2008 Phys. Rev. B 77 205430
[11] Cavar E, Blum M C, Pivetta M, Patthey F, Chergui M and Schneider W D 2005 Phys. Rev. Lett. 95 196102
[12] Hoffmann G, Kliewer J and Berndt R 2001 Phys. Rev. Lett. 87 176803
[13] Nazin G V, Qiu X H and Ho W 2003 Phys. Rev. Lett. 90 216110
[14] Thirstrup C, Sakurai M, Stokbro K and Aono M 1999 Phys. Rev. Lett. 82 1241
[15] Jackson J D 1975 Classical Electrodynamics, 2nd edn. (New York:John Wiley & Sons) p. 490
[16] Yim C M, Pang C L and Thornton G 2010 Phys. Rev. Lett. 104 036806
[17] Zuo F, Wang L, Wu T, Zhang Z Y, Borchardt D and Feng P Y 2010 J. Am. Chem. Soc. 132 11856
[18] Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C L, Psaro R and Dal Santo V 2012 J. Am. Chem. Soc. 134 7600
[19] Dombrowski R, Steinebach C, Wittneven C, Morgenstern M and Wiesendanger R 1999 Phys. Rev. B 59 8043
[20] Berndt R and Gimzewski J K 1992 Phys. Rev. B 45 14095
[21] Mcellistrem M, Haase G, Chen D and Hamers R J 1993 Phys. Rev. Lett. 70 2471
[22] Kaasbjerg K and Flensberg K 2008 Nano Lett. 8 3809
[23] Thygesen K S and Rubio A 2009 Phys. Rev. Lett. 102 046802
[24] Barr J D, Stafford C A and Bergfield J P 2012 Phys. Rev. B 86 115403
[25] Perrin M L, Verzijl C J O, Martin C A, Shaikh A J, Eelkema R, van Esch J H, van Ruitenbeek J M, Thijssen J M, van der Zant H S J and Dulic D 2013 Nat. Nanotechnol. 8 282
[26] Cooper B R, Ehrenreich H and Philipp H R 1965 Phys. Rev. 138 A494
[27] Ehrenreich H and Philipp H R 1962 Phys. Rev. 128 1622
[28] Minato T, Sainoo Y, Kim Y, Kato H S, Aika K, Kawai M, Zhao J, Petek H, Huang T, He W, Wang B, Wang Z, Zhao Y, Yang J L and Hou J G 2009 J. Chem. Phys. 130 124502
[29] Wendt S, Sprunger P T, Lira E, Madsen G K H, Li Z S, Hansen J O, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B and Besenbacher F 2008 Science 320 1755
[30] Zhang Z and Yates J T 2012 Chem. Rev. 112 5520
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[5] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[6] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[7] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[8] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[12] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[13] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[14] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[15] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
No Suggested Reading articles found!