Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067801    DOI: 10.1088/1674-1056/27/6/067801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transition intensity calculation of Yb: YAG

Hong-Bo Zhang(张洪波)1, Qing-Li Zhang(张庆礼)2, Xing Wang(王星)1, Gui-Hua Sun(孙贵花)2, Xiao-Fei Wang(王小飞)2, De-Ming Zhang(张德明)2, Dun-Lu Sun(孙敦陆)2
1 School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710038, China;
2 The Key Laboratory of Photonic Devices and Materials of Anhui Province, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  The Yb:YAG is an excellent high-average power and ultra-short pulse laser crystal. Transition intensity parameters Atpk and Huang-Rhys factors are fitted to its emission spectrum by the full-profile fitting method. Calculated results indicate that the emission spectrum of Yb:YAG at cryogenic temperature consists of three pure electron state transitions and two phonon-assisted transitions, one vibronic transition releases one-phonon of 3 cm-1, and the other vibronic transition absorbs one-phonon of 22 cm-1. At 300 K, the phonon assisted transition of 3 cm-1 turns into two-or more-phonon assisted transitions. The procedure absorbing phonon can reduce the thermal load of Yb:YAG and improve the laser efficiency, which may be one of the reasons why Yb:YAG has excellent performance. The emission bands of Yb:YAG are broadened thermally, and the peak values decrease by several times. The emission cross sections of Yb:YAG determined by Fuchtbauer-Ladenburg (F-L) formula are remarkably different from those calculated with Atpk, which indicates that it is necessary for a laser material to determine its transition intensity parameters Atpk in order to reasonably evaluate the laser performance.
Keywords:  transition intensity parameters      rare earth      photoluminescence      Yb3+:YAG  
Received:  18 December 2017      Revised:  20 March 2018      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  78.60.Lc (Optically stimulated luminescence)  
  75.10.Dg (Crystal-field theory and spin Hamiltonians)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61405206,51502292,and 51702322),the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos.CXJJ-16M251 and CXJJ-15M055),and the National Key Research and Development Program of China (Grant No.2016YFB0402101).
Corresponding Authors:  Qing-Li Zhang, Xing Wang     E-mail:  zql@aiofm.ac.cn;1678648615@qq.com

Cite this article: 

Hong-Bo Zhang(张洪波), Qing-Li Zhang(张庆礼), Xing Wang(王星), Gui-Hua Sun(孙贵花), Xiao-Fei Wang(王小飞), De-Ming Zhang(张德明), Dun-Lu Sun(孙敦陆) Transition intensity calculation of Yb: YAG 2018 Chin. Phys. B 27 067801

[1] Rutherford Todd S, William Tulloch M, Gustafson Eric K, Robert L 2000 IEEE J. Quantum Electron. 36 205
[2] Bruesselbach Hans and David Sumida S 2005 IEEE J. Sel. Top. Quantum Electron. 11 600
[3] Chanteloup J C, Bahbah S, Bourdet G, Dambrine C, Huang Z, Le S, Le G, Pluvinage M, Vincent B and Yu H 2006 2006 Conf. Lasers Electro-Opt. 2006 Quantum Electronics and Laser Science Conference 1
[4] Sekine T, Takeuchi Y, Hatano Y, Muramatsu Y, Kurita T, Morita T, Mizuta Y, Kabeya Y, Kurata M, Kawai K, Iguchi T, Tamaoki Y, Iyama K, Zheng Y and Kato Y 2017 2017 Conf. Lasers Electro-Opt. (CLEO) 1
[5] Krüger M, Münzer A, Kessel A, Lysov O, Leshchenko V E, Trushin Sergei A, Major Z, Krausz F and Karsch S 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 1
[6] Li M, Zhou T, Xu L, Gao Q, Hu H, Wu Y, Wang D, Li J, Lei J, Lv W, Yu Y, Wu Z and Zhao N 2017 IEEE Photon. J. 1507109 DOI:10.1109/JPHOT.2017.2768408
[7] Patel Falgun D, Honea Eric C, Speth Joel, Payne Stephen A, Hutcheson Ralph and Equall Randy 2001 IEEE J. Quantum Electron. 37 135
[8] Zhang Q L, Ning K J, X J, Ding L H, Zhou W L, Liu W P, Yin S T and Jiang H H 2010 Chin. Phys. B 19 087501
[9] Zhang Q L, Sun G H, Ning K J, Shi C S, Liu W P, Sun D L and Yin S T 2016 Chin. Phys. B 25 117802
[10] Zhang Q L, Sun G H, Gao J Y, Sun D L, Luo J Q, Liu W P, Zhang D M, Shi C S and Yin S T 2017 Chin. Phys. B 26 077803
[11] Wang X M, Wang X F and Zhang Q L 2015 J. Synthetic Crystals 44 1465
[12] Koȑner J, Jambunathan V, Hein J, Seifert R, Loeser M, Siebold M, Schramm U, Sikocinski P, Lucianetti A, Mocek T, Kaluza M C 2014 Appl. Phys. B 116 75
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[12] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[13] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
No Suggested Reading articles found!