Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 067103    DOI: 10.1088/1674-1056/27/6/067103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2

Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅)
Department of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  

By using first-principles electronic structure calculations, we have studied the magnetic interactions in a proposed BaZn2P2-based diluted magnetic semiconductor (DMS). For a typical compound Ba(Zn0.944Mn0.056)2P2 with only spin doping, due to the superexchange interaction between Mn atoms and the lack of itinerant carriers, the short-range antiferromagnetic coupling dominates. Partially substituting K atoms for Ba atoms, which introduces itinerant hole carriers into the p orbitals of P atoms so as to link distant Mn moments with the spin-polarized hole carriers via the p-d hybridization between P and Mn atoms, is very crucial for the appearance of ferromagnetism in the compound. Furthermore, applying hydrostatic pressure first enhances and then decreases the ferromagnetic coupling in (Ba0.75K0.25)(Zn0.944Mn0.056)2P2 at a turning point around 15 GPa, which results from the combined effects of the pressure-induced variations of electron delocalization and p-d hybridization. Compared with the BaZn2As2-based DMS, the substitution of P for As can modulate the magnetic coupling effectively. Both the results for BaZn2P2-based and BaZn2As2-based DMSs demonstrate that the robust antiferromagnetic (AFM) coupling between the nearest Mn-Mn pairs bridged by anions is harmful to improving the performance of these Ⅱ-Ⅱ-V based DMS materials.

Keywords:  magnetic semiconductor      p-d hybridization      magnetic coupling      first-principles calculations  
Received:  08 March 2018      Revised:  30 March 2018      Accepted manuscript online: 
PACS:  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.50.-y (Studies of specific magnetic materials)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0302903),the National Natural Science Foundation of China (Grant Nos.11774422 and 11774424),the Fundamental Research Funds for the Central Universities,and the Research Funds of Renmin University of China (Grant Nos.14XNLQ03 and 16XNLQ01).

Corresponding Authors:  Kai Liu, Zhong-Yi Lu     E-mail:  kliu@ruc.edu.cn;zlu@ruc.edu.cn

Cite this article: 

Huan-Cheng Yang(杨焕成), Kai Liu(刘 凯), Zhong-Yi Lu(卢仲毅) Magnetic interactions in a proposed diluted magnetic semiconductor (Ba1-xKx)(Zn1-yMny)2P2 2018 Chin. Phys. B 27 067103

[1] Ohno H 1998 Science 281 951
[2] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[3] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y and Ohtani K 2000 Nature 408 944
[4] Dietl T 2010 Nat. Mater. 9 965
[5] Žutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[6] Zhao J H 2016 Chin. Sci. Bull. 61 1401
[7] Pan D, Wang S L, Wang H L, Yu X Z, Wang X L and Zhao J H 2014 Chin. Phys. Lett. 31 078103
[8] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B and Gehring G A, 2003 Nat. Mater. 2 673
[9] Saito H, Zayets V, Yamagata S and Ando K 2003 Phys. Rev. Lett. 90 207202
[10] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[11] Overberg M E, Gila B P, Abernathy C R, Pearton S J, Theodoropoulou N A, McCarthy K T, Arnason S B and Hebard A F 2001 Appl. Phys. Lett. 79 3128
[12] Soo Y L, Huang S W, Ming Z H, Kao Y H, Munekata H and Chang L L 1996 Phys. Rev. B 53 4905
[13] Chen L, Yang X, Yang F H, Zhao J H, Misuraca J, Xiong P and von Molnár S 2011 Nano. Lett. 11 2584
[14] Furdyna J K 1988 J. Appl. Phys. 64 R29
[15] Kudrnovský J, Turek I, Drchal V, Máca F, Weinberger P and Bruno P 2004 Phys. Rev. B 69 115208
[16] Dietl T, Haury A and Merle d'Aubigné Y 1997 Phys. Rev. B 55 R3347
[17] Jungwirth T, Sinova J, Mašek J, Kučera J and MacDonald A H 2006 Rev. Mod. Phys. 78 809
[18] Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
[19] Baron T, Tatarenko S, Saminadayar K, Magnea N and Fontenille J 1994 Appl. Phys. Lett. 65 1284
[20] Haury A, Wasiela A, Arnoult A, Cibert J, Tatarenko S, Dietl T and Merle d'Aubigné Y 1997 Phys. Rev. Lett. 79 511
[21] Ferrand D, Cibert J, Wasiela A, Bourgognon C, Tatarenko S, Fishman G, Andrearczyk T, Jaroszyński J, Koleśnik S, Dietl T, Barbara B and Dufeu D 2001 Phys. Rev. B 63 085201
[22] Matsukura F, Ohno H and Dietl T 2002 Handbook of Magnetic Materials, Vol.~14 pp.~1-87
[23] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F L, Zhang J S, Wang Y Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D and Uemura Y J 2011 Nat. Commun. 2 422
[24] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P and Jin C Q 2013 Nat. Commun. 4 1442
[25] Ding C, Man H Y, Qin C, Lu J C, Sun Y L, Wang Q, Yu B Q, Feng C M, Goko T, Arguello C J, Liu L, Frandsen B A, Uemura Y J, Wang H D, Luetkens H, Morenzoni E, Han W, Jin C Q, Munsie T, Williams T J, D'Ortenzio R M, Medina T, Luke G M, Imai T and Ning F L 2013 Phys. Rev. B 88 041102(R)
[26] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[27] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[28] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[29] Zhao K, Chen B, Zhao G Q, Li X, Yuan Z, Deng Z, Liu Q Q and Jin C Q 2014 Chin. Sci. Bull. 59 2524
[30] Glasbrenner J K, Žutić I and Mazin I I 2014 Phys. Rev. B 90 140403(R)
[31] Tao H L, Lin L, Zhang Z H, He M and Song B 2015 Comput. Mater. Sci. 98 93
[32] Yang J T, Luo S J and Xiong Y C 2015 Solid State Sci. 46 102
[33] Suzuki H, Zhao K, Shibata G, Takahashi Y, Sakamoto S, Yoshimatsu K, Chen B J, Kumigashira H, Chang F H, Lin H J, Huang D J, Chen C T, Gu B, Maekawa S, Uemura Y J, Jin C Q and Fujimori A 2015 Phys. Rev. B 91 140401(R)
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[41] Tao H L, Zhang Z H, Pan L L, He M and Song B 2014 Solid State Commun. 177 113
[42] Mašek J, Kudrnovský J, Máca F, Gallagher B L, Campion R P, Gregory D H and Jungwirth T 2007 Phys. Rev. Lett. 98 067202
[43] Hellmann A, Löhken A, Wurth A and Mewis A 2007 Z. Naturforsch. B 62 155
[44] Xiao Z, Hiramatsu H, Ueda S, Toda Y, Ran F Y, Guo J, Lei H, Matsuishi S, Hosono H and Kamiya T 2014 J. Am. Chem. Soc. 136 14959
[45] Klüfers P and Mewis A 1978 Z. Naturforsch. B 33 151
[46] Shein I R and Ivanovskii A L 2014 J. Alloys Compd. 583 100
[47] Anderson P W 1950 Phys. Rev. 79 350
[48] Zener C 1951 Phys. Rev. 81 440
[49] Sato K, Schweika W, Dederichs P H and KatayamaYoshida H 2004 Phys. Rev. B 70 201202
[50] Sun F, Li N N, Chen B J, Jia Y T, Zhang L J, Li W M, Zhao G Q, Xing L Y, Fabbris G, Wang Y G, Deng Z, Uemura Y J, Mao H K, Haskel D, Yang W G and Jin C Q 2016 Phys. Rev. B 93 224403
[51] Sun F, Zhao G Q, Escanhoela C A, Jr, Chen B J, Kou R H, Wang Y G, Xiao Y. M, Chow P, Mao H K, Haskel D, Yang W G and Jin C Q 2017 Phys. Rev. B 95 094412
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[9] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
No Suggested Reading articles found!