Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 066801    DOI: 10.1088/1674-1056/27/6/066801
Special Issue: TOPICAL REVIEW — Electron microscopy methods for emergent materials and life sciences
TOPICAL REVIEW—Electron microscopy methods for the emergent materials and life sciences Prev   Next  

Towards dynamic structure of biological complexes at atomic resolution by cryo-EM

Kai Zhang(张凯)
The Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
Abstract  

Cryo-electron microscopy makes use of transmission electron microscopy to image vitrified biological samples and reconstruct their three-dimensional structures from two-dimensional projections via computational approaches. After over 40 years of development, this technique is now reaching its zenith and reforming the research paradigm of modern structural biology. It has been gradually taking over X-ray crystallography as the mainstream method. In this review, we briefly introduce the history of cryo-EM, recent technical development and its potential power to reveal dynamic structures. The technical barriers and possible approaches to tackle the upcoming challenges are discussed.

Keywords:  cryo-electron microscopy      protein complexes      three-dimensional reconstruction      dynamic structures      probabilistic conformational spaces  
Received:  02 March 2018      Revised:  26 April 2018      Accepted manuscript online: 
PACS:  68.37.Lp (Transmission electron microscopy (TEM))  
Corresponding Authors:  Kai Zhang     E-mail:  kzhang@mrc-lmb.cam.ac.uk

Cite this article: 

Kai Zhang(张凯) Towards dynamic structure of biological complexes at atomic resolution by cryo-EM 2018 Chin. Phys. B 27 066801

[1] Marton L 1934 Nature 133 911
[2] Glaeser R M 2016 Methods Enzymol. 579 19
[3] Cheng Y 2015 Cell 161 450
[4] Dubochet J, Adrian M, Chang J J, et al. 1988 Q. Rev. Biophys. 21 129
[5] Zhang K, Zhang Y, Hu Z, et al. 2010 Acta Biophys. Sin. 26 533
[6] Mcmullan G, Faruqi A R and Henderson R 2016 Methods Enzymol 579 1
[7] Zhang K and Liu Z 2018 Sci. China-Life Sci. 61 368
[8] Fujiyoshi Y 2011 J. Electron. Microsc. (Tokyo) 60 Suppl 1 S149
[9] Frank J 2016 Microscopy (Oxford) 65 3
[10] Egelman E H 2015 Arch. Biochem. Biophys. 581 54
[11] Baumeister W, Grimm R and Walz J 1999 Trends Cell Biol. 9 81
[12] Mentes A, Huehn A, Liu X, et al. 2018 Proc. Natl. Acad. Sci. USA 115 1292
[13] Zhang R, Alushin G M, Brown A, et al. 2015 Cell 162 849
[14] Zhang Y, Wang W, Chen J, et al. 2013 Structure
[15] Pang X, Fan J, Zhang Y, et al. 2014 Dev. Cell 31 73
[16] Egelman E H 2007 J. Struct. Biol. 157 83
[17] Kabachinski G and Schwartz T U 2015 J. Cell Sci. 128 423
[18] Fernandez-Martinez J, Kim S J, Shi Y, et al. 2016 Cell 167 1215
[19] Hu B, Lara-Tejero M, Kong Q, et al. 2017 Cell 168 1065
[20] Sun S, Zhang K, Xu W, et al. 2009 Prog. Biochem. Biophys. 36 729
[21] Nicastro D, Frangakis A S, Typke D, et al. 2000 J. Struct. Biol. 129 48
[22] Davies K M, Strauss M, Daum B, et al. 2011 Proc. Natl. Acad. Sci. USA 108 14121
[23] Zhao G P, Perilla J R, Yufenyuy E L, et al. 2013 Nature 497 643
[24] Wan W, Kolesnikova L, Clarke M, et al. 2017 Nature 551 394
[25] Liao M F, Cao E, Julius D, et al. 2013 Nature 504 107
[26] Bai X C, Fernandez I S, Mcmullan G, et al. 2013 Elife 2 E00461
[27] Scheres S H 2012 J. Mol. Biol. 415 406
[28] Scheres S H 2012 J. Struct. Biol. 180 519
[29] Brilot A F, Chen J Z, Cheng A, et al. 2012 J. Struct. Biol. 177 630
[30] Ruska E 1987 Biosci. Rep. 7 607
[31] De Rosier D J and Klug A 1968 Nature 217 130
[32] Crowther R A, Amos L A, Finch J T, et al. 1970 Nature 226 421
[33] Brenner S and Horne R W 1959 Biochim. Biophys. Acta 34 103
[34] Hall C E, Jakus M A and Schmitt F O 1945 J. Appl. Phys. 16 459
[35] Huxley H E and Zubay G 1961 J. Biophys. Biochem. Cytol. 11 273
[36] Henderson R and Unwin P N 1975 Nature 257 28
[37] Taylor K A and Glaeser R M 1974 Science 186 1036
[38] Dubochet J and Mcdowall A W 1981 J. Microsc. 124 3
[39] Dubochet J, et al. 1982 J. Microsc. 128 219
[40] Adrian M, Dubochet J, Lepault J, et al. 1984 Nature 308 32
[41] Henderson R, Baldwin J M, Ceska T A, et al. 1990 J. Mol. Biol. 213 899
[42] Frank J 1975 Ultramicroscopy 1 159
[43] Frank J, Verschoor A and Boublik M 1981 Science 214 1353
[44] Frank J, Goldfarb W, Eisenberg D, et al. 1978 Ultramicroscopy 3 283
[45] Frank J 1981 Ultramicroscopy 6 343
[46] Kuhlbrandt W, Wang D N and Fujiyoshi Y 1994 Nature 367 614
[47] Murata K, Mitsuoka K, Hirai T, et al. 2000 Nature 407 599
[48] Wang D N and Kuhlbrandt W 1991 J. Mol. Biol. 217 691
[49] Henderson R 1995 Q. Rev. Biophys. 28 171
[50] Henderson R 1992 Ultramicroscopy 46 1
[51] Van Heel M and Frank J 1981Ultramicroscopy 6 187
[52] Harauz G and Ottensmeyer F P 1983 Ultramicroscopy 12 309
[53] Van Heel M 1987 Ultramicroscopy 21 111
[54] Radermacher M, Wagenknecht T, Verschoor A, et al. 1987 J. Microsc. 146 113
[55] Radermacher M, Wagenknecht T, Verschoor A, et al. 1986 J. Microsc. 141 Rp1
[56] Van Heel M, Harauz G, Orlova E V, et al. 1996 J. Struct. Biol. 116 17
[57] Marabini R, Masegosa I M, San Martin M C, et al. 1996 J. Struct. Biol. 116 237
[58] Ludtke S J, Baldwin P R and Chiu W 1999 J. Struct. Biol. 128 82
[59] Grigorieff N 1998 J. Mol. Biol. 277 1033
[60] Heymann J B 2001 J. Struct. Biol. 133 156
[61] Li X M, Mooney P, Zheng S, et al. 2013 Nat. Methods 10 584
[62] Faruqi A R and Henderson R 2007 Curr. Opin. Struct. Biol. 17 549
[63] Zhang K, Wang L, Liu Y X, et al. 2013 Protein Cell 4 432
[64] Huo Y W, Hu Z J, Zhang K, et al. 2010 Structure 18 1270
[65] Mcmullan G, Chen S, Henderson R, et al. 2009 Ultramicroscopy 109 1126
[66] Zhang X, Jin L, Fang Q, et al. 2010 Cell 141 472
[67] Grigorieff N and Harrison S C 2011 Curr. Opin. Struct. Biol. 21 265
[68] Cheng L P, Sun J C, Zhang K, et al. 2011 Proc. Natl. Acad. Sci. USA 108 1373
[69] Yang C W, Ji G, Liu H R, et al. 2012 Proc. Natl. Acad. Sci. USA 109 6118
[70] Cheng L P, Huang X X, Li X M, et al. 2014 Virology 450-451 174
[71] Liu H R and Cheng L P 2015 Science 349 1347
[72] Li X M, Zheng S Q, Egami K, et al. 2013 J. Struct. Biol. 184 251
[73] Zernike F 1955 Science 121 345
[74] Danev R and Nagayama K 2001 Ultramicroscopy 88 243
[75] Dai W, Fu C, Raytcheva D, et al. 2013 Nature 502 707
[76] Murata K, Liu X, Danev R, et al. 2010 Structure 18 903
[77] Danev R, Buijsse B, Khoshouei M, et al. 2014 Proc. Natl. Acad. Sci. USA 111 15635
[78] Danev R and Baumeister W 2016 Elife 5
[79] Danev R, Tegunov D and Baumeister W 2017 Elife 6
[80] Khoshouei M, Radjainia M, Baumeister W, et al. 2017 Nat. Commun. 8 16099
[81] Liang Y L, Khoshouei M, Radjainia M, et al. 2017 Nature 546 118
[82] Fan X, Zhao L Y, Liu C A, et al. 2017 Structure 25 1623
[83] Sigworth F J 1998 J. Struct. Biol. 122 328
[84] Scheres S H, Gao H, Valle M, et al. 2007 Nat. Methods 4 27
[85] Kimanius D, Forsberg B O, Scheres S H, et al. 2016 Elife 5
[86] Punjani A, Rubinstein J L, Fleet D J, et al. 2017 Nat. Methods 14 290
[87] Grant T and Grigorieff N 2015 Elife 4 E06980
[88] Scheres S H W 2014 Elife 3
[89] Zheng S Q, Palovcak E, Armache J P, et al. 2017 Nat. Methods 14 331
[90] Gao Y A, Cao E, Julius D, et al. 2016 Nature 534 347
[91] Wade R H 1992 Ultramicroscopy 46 145
[92] Scherzer 1949 J. Appl. Phys. 20 20
[93] Urnavicius L, Zhang K, Diamant A G, et al. 2015 Science 347 1441
[94] Zhu L, Wang X X, Ren J S, et al. 2015 Nat. Commun. 6 8316
[95] Brown A, Shao S, Murray J, et al. 2015 Nature 524 493
[96] Zhang K 2016 J. Struct. Biol. 193 1
[97] Zhang X and Zhou Z H 2011 J. Struct. Biol. 175 253
[98] Chen Y, Zhang Y, Zhang K, et al. 2016 J. Struct. Biol. 195 49
[99] Russo C J and Passmore L A 2014 Science 346 1377
[100] Razinkov I, Dandey V, Wei H, et al. 2016 J. Struct. Biol. 195 190
[101] Yu G M, Li K P and Jiang W 2016 Methods 100 16
[102] Glaeser R M 2016 Nat. Methods 13 28
[103] Jain T, Sheehan P, Crum J, et al. 2012 J. Struct. Biol. 179 68
[104] Chen B, Kaledhonkar S, Sun M, et al. 2015 Structure 23 1097
[105] Huiskonen J T, Jaalinoja H T, Briggs J A, et al. 2007 J. Struct. Biol. 158 156
[106] Ilca S L, Kotecha A, Sun X, et al. 2015 Nat. Commun. 6 8843
[107] Zhang K, Foster H E, Rondelet A, et al. 2017 Cell 169 1303
[108] Bai X C, Rajendra E, Yang G, et al. 2015 Elife 4
[109] Roweis S T and Saul L K 2000 Science 290 2323
[110] Dashti A, Schwander P, Langlois R, et al. 2014 Proc. Natl. Acad. Sci. USA 111 17492
[1] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[2] Computing methods for icosahedral and symmetry-mismatch reconstruction of viruses by cryo-electron microscopy
Bin Zhu(朱彬), Lingpeng Cheng(程凌鹏), Hongrong Liu(刘红荣). Chin. Phys. B, 2018, 27(5): 056802.
[3] Structural biology revolution led by technical breakthroughs in cryo-electron microscopy
Chang-Cheng Yin(尹长城). Chin. Phys. B, 2018, 27(5): 058703.
[4] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
No Suggested Reading articles found!