Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 063103    DOI: 10.1088/1674-1056/27/6/063103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations

Xiang-Yue Liu(刘湘月)1, Hong Zhang(张红)1,2,3, Xin-Lu Cheng(程新路)1
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China;
3 College of Physical Science and Technology, Sichuan University, Chengdu 610065, China
Abstract  Impurity segregation at grain boundary (GB) can significantly affect the mechanical behaviors of polycrystalline metal. The effect of nickel impurity segregated at Cu GB on the deformation mechanism relating to loading direction is comprehensively studied by atomic simulation. The atomic structures and shear responses of CuΣ9(114) <110> and Σ9(221) <110> symmetrical tilt grain boundary with different quantities of nickel segregation are analyzed. The results show that multiple accommodative evolutions involving GB gliding, GB shear-coupling migration, and dislocation gliding can be at play, where for the[221] shear of Σ9(114) <110> the segregated GBs tend to maintain their initial configurations and a segregated GB with a higher impurity concentration is more inclined to be a dislocation emission source while maintaining the high mechanical strength undergone plastic deformation for the[114] shear of Σ9(221) <110>. It is found that the nickel segregated GB exerts a cohesion enhancement effect on Cu under deformation:strong nickel segregation increases the work of separation of GB, which is proved by the first-principles calculations.
Keywords:  grain boundary segregation      nickel impurity      first-principles calculations      cohesion effect  
Received:  14 January 2018      Revised:  05 April 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  62.20.-x (Mechanical properties of solids)  
  61.72.sd (Impurity concentration)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No.2017YFA0303600) and the National Natural Science Foundation of China (Grant Nos.11474207 and 11374217).
Corresponding Authors:  Hong Zhang     E-mail:  hongzhang@scu.edu.cn

Cite this article: 

Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路) Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations 2018 Chin. Phys. B 27 063103

[1] Zhang L, Lu C, Tieu K, Zhao X and Pei L Q 2015 Nanoscale 7 7224
[2] Yu W S and Shen S P 2016 Int. J. Plast. 85 93
[3] Tang Y Z, Bringa E M and Meyers M A 2013 Mater. Sci. Eng. A 580 414
[4] Swygenhoven H V and Derlet P M 2001 Phys. Rev. B 64 224105
[5] Wan L and Wang S P 2010 Phys. Rev. B 82 214112
[6] Tucker G J and McDowell D L 2011 Int. J. Plast. 27 841
[7] Beyerlein I J, Demkowicz M J, Misra A and Uberuaga B P 2015 Prog. Mater. Sci. 74 125
[8] Liu X G, Wang X W, Wang J Y and Zhang H Y 2005 J. Phys.:Condens. Matter 17 4301
[9] Meng F S, Lu X M, Liu Y L and Qi Y 2017 J. Mater. Sci. 52 4309
[10] Lu G H, Suzuki A, Ito A, Kohyama M and Yamamoto R 2001 Philos. Mag. Lett. 81 757
[11] Peng B Y, Wu X J, Zhou F X and Tang Q H 1992 J. Appl. Phys. 71 1229
[12] Foiles S M 1989 Phys. Rev. B 40 11502
[13] Lee D Y, Barrera E, Stark J P and Marcus H L 1984 Metall. Mater. Trans. A 15 1415
[14] Antonov S, Huo J J, Feng Q, Isheim D, Seidman D N, Helmink R C, Sun E and Tin S 2017 Scripta Mater. 138 35
[15] Yu Z Y, Cantwell P R, Gao Q, Yin D, Zhang Y Y, Zhou N X, Rohrer G S, Widom M, Luo J and Harmer M P 2017 Science 358 97
[16] Herbig M, Raabe D, Li Y J, Choi P, Zaefferer S and Goto S 2014 Phys. Rev. Lett. 112 126103
[17] Lu G H, Zhang Y, Deng S H, Wang T M, Kohyama M, Yamamoto R, Liu F, Horikawa K and Kanno M 2006 Phys. Rev. B 73 224115
[18] Zhang S J, Kontsevoi O Y, Freeman A J and Olson G B 2011 Acta Mater. 59 6155
[19] Hu X L, Zhao R X, Luo Y and Song Q G 2017 Chin. Phys. B 26 023101
[20] Lozovoi A Y, Paxton A T and Finnis M W 2006 Phys. Rev. B 74 155416
[21] Zhang S J, Kontsevoi O Y, Freeman A J and Olson G B 2012 Phys. Rev. B 85 214109
[22] Li Y G, Korzhavyi P A, Sandström R and Lilja C 2017 Rapid Commun. 1 070602
[23] Chen X M and Song S H 2009 Acta Phys. Sin. 58 183 (in Chinese)
[24] Zhao D D, Lovvik M O, Marthinsen K and Li Y J 2018 Acta Mater 145 235
[25] Cai C X, Sun B R, Liu Y, Zhang N, Zhang J H, Yu H, Huang J Y, Peng Q M and Shen T D 2018 Mater. Sci. Eng. A 717 144
[26] Ene C B, Schmitz G, Kirchheim R and Hütten A 2005 Acta Mater. 53 3383
[27] Divinski S, Ribbe J, Schmitz G and Herzig C 2007 Acta Mater. 55 3337
[28] Zhang L, Lu C and Tieu K. 2015 Sci. Rep. 4 5919
[29] Faken D and Jónsson D 1994 Comput. Mater. Sci. 2 279
[30] Plimpton S J 1995 J. Comput. Phys. 117 1
[31] Onat B and Durukanoǧlu S 2014 J. Phys.:Condens. Matter 26 035404
[32] Stukowski A 2012 Model. Simul. Mater. Sci. Eng. 20 045021
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[36] Griffith A A and Eng M 1921 Philos. Trans. R. Soc. London, Ser. A 221 163
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[3] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[4] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[5] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[6] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[7] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[8] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[9] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[10] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[11] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[12] Extraordinary mechanical performance in charged carbyne
Yong-Zhe Guo(郭雍哲), Yong-Heng Wang(汪永珩), Kai Huang(黄凯), Hao Yin(尹颢), and En-Lai Gao(高恩来). Chin. Phys. B, 2022, 31(12): 128102.
[13] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[14] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[15] First-principles study on improvement of two-dimensional hole gas concentration and confinement in AlN/GaN superlattices
Huihui He(何慧卉) and Shenyuan Yang(杨身园). Chin. Phys. B, 2022, 31(1): 017104.
No Suggested Reading articles found!