Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 046301    DOI: 10.1088/1674-1056/27/4/046301
RAPID COMMUNICATION Prev   Next  

Superconductivity in electron-doped arsenene

Xin Kong(孔鑫)1,2, Miao Gao(高淼)3, Xun-Wang Yan(闫循旺)4, Zhong-Yi Lu(卢仲毅)5, Tao Xiang(向涛)1,6
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Microelectronics Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, China;
4 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China;
5 Department of Physics, Renmin University of China, Beijing 100872, China;
6 Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
Abstract  

Based on the first-principles density functional theory electronic structure calculation, we investigate the possible phonon-mediated superconductivity in arsenene, a two-dimensional buckled arsenic atomic sheet, under electron doping. We find that the strong superconducting pairing interaction results mainly from the pz-like electrons of arsenic atoms and the A1 phonon mode around the K point, and the superconducting transition temperature can be as high as 30.8 K in the arsenene with 0.2 doped electrons per unit cell and 12%-applied biaxial tensile strain. This transition temperature is about ten times higher than that in the bulk arsenic under high pressure. It is also the highest transition temperature that is predicted for electron-doped two-dimensional elemental superconductors, including graphene, silicene, phosphorene, and borophene.

Keywords:  arsenene      phonon-mediated superconductivity      first-principles calculation      maximally localized Wannier functions  
Received:  22 February 2018      Revised:  02 March 2018      Accepted manuscript online: 
PACS:  63.20.kd (Phonon-electron interactions)  
  74.20.Pq (Electronic structure calculations)  
  74.72.Ek (Electron-doped)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0302901), the National Natural Science Foundation of China (Grant Nos. 11474331, 11404383, and 11474004), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY17A040005), and the K. C. Wong Magna Fund in Ningbo University.

Corresponding Authors:  Miao Gao     E-mail:  gaomiao@nbu.edu.cn

Cite this article: 

Xin Kong(孔鑫), Miao Gao(高淼), Xun-Wang Yan(闫循旺), Zhong-Yi Lu(卢仲毅), Tao Xiang(向涛) Superconductivity in electron-doped arsenene 2018 Chin. Phys. B 27 046301

[1] De Franceschi S, Kouwenhoven L, Schönenberger Ch and Wernsdorfer W 2010 Nat. Nanotech. 5 703
[2] Huefner M, May C, Kičin S, Ensslin K, Ihn T, Hilke M, Suter K, de Rooij N F and Staufer U 2009 Phys. Rev. B 79 134530
[3] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C and Xue Q K 2012 Chin. Phys. Lett. 29 037402
[4] Ge J F, Liu Z L, Liu C H, Gao C L, Qian D, Xue Q K, Liu Y and Jia J F 2015 Nat. Mater. 14 285
[5] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu Pang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. 105 14262
[6] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H and Shen Z X 2014 Nature 515 245
[7] Uchoa B and Castro Neto A H 2007 Phys. Rev. Lett. 98 146801
[8] Profeta G, Calandra M and Mauri F 2012 Nat. Phys. 8 131
[9] Tiwari A P, Shin S, Hwang E, Jung S G, Park T and Lee H 2015 arXiv:1508.06360
[10] Chapman J, Su Y, Howard C A, Kundys D, Grigorenko A, Guinea F, Geim A K, Grigorieva I V and Nair R R 2016 Sci. Rep. 6 23254
[11] Si C, Liu Z, Duan W and Liu F 2013 Phys. Rev. Lett. 111 196802
[12] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomáanek D and Ye P D 2014 ACS Nano 8 4033
[13] Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B and Aufray B 2010 Appl. Phys. Lett. 97 223109
[14] Chen L, Liu C C, Feng B, He X, Cheng P, Ding Z, Meng S, Yao Y and Wu K 2012 Phys. Rev. Lett. 109 056804
[15] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[16] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L and Wu K 2016 Nat. Chem. 8 563
[17] Chen L, Li H, Feng B, Ding Z, Qiu J, Cheng P, Wu K and Meng S 2013 Phys. Rev. Lett. 110 085504
[18] Nie Y F, Brahimi E, Budnick J I, Hines W A, Jain M and Wells B O 2009 Appl. Phys. Lett. 94 242505
[19] Ding F, Ji H, Chen Y, Herklotz A, Dörr K, Mei Y, Rastelli A and Schmidt O G 2010 Nano Lett. 10 3453
[20] Conley H J, Wang B, Ziegler J I, Haglund Jr R F, Pantelides S T and Bolotin K I 2013 Nano Lett. 13 3626
[21] Wan W, Ge Y, Yang F and Yao Y 2013 Europhys. Lett. 104 36001
[22] Shao D F, Lu W J, Lv H Y and Sun Y P 2014 Europhys. Lett. 108 67004
[23] Ge Y, Wan W, Yang F and Yao Y 2015 New J. Phys. 17 035008
[24] Penev E S, Kutana A and Yakobson B I 2016 Nano Lett. 16 2522
[25] Gao M, Li Q Z, Yan X W and Wang J 2017 Phys. Rev. B 95 024505
[26] Cheng C, Sun J T, Liu H, Fu H X, J. Zhang, Chen X R and Meng S 2017 2D Mater. 4 025032
[27] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112
[28] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[29] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Communs. 7 12585
[30] Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
[31] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys.:Condens. Matter 21 395502
[32] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993
[33] Giustino F, Cohen M L and Louie S G 2007 Phys. Rev. B 76 165108
[34] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[35] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[36] Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847
[37] Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109
[38] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[39] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[40] Noffsinger J, Giustino F, Malone B D, Park C H, Louie S G and Cohen M L 2010 Comput. Phys. Commun. 181 2140
[41] Poncáe S, Margine E R, Verdi C and Giustino F 2016 Comput. Phys. Commun. 209 116
[42] Allen P B 1972 Phys. Rev. B 6 2577
[43] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[44] Cahangirov S, Topsakal M, Aktürk E, Şahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[45] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[46] Tsai H S, Wang S W, Hsiao C H, Chen C W, Ouyang H, Chueh Y L, Kuo H C and Liang J H 2016 Chem. Mater. 28 425
[47] Madelung O 2004 Semiconductors:Data Handbook, 3rd edn. (New York:Springer-Verlag) pp. 405-411, ISBN 3540404880
[48] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M and Iwasa Y 2009 Adv. Funct. Mater. 19 1046
[49] Fujimoto T and Awaga K 2013 Phys. Chem. Chem. Phys. 15 8983
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!
    PDF Preview