Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 034401    DOI: 10.1088/1674-1056/27/3/034401
Special Issue: TOPICAL REVIEW — Thermal and thermoelectric properties of nano materials
TOPICAL REVIEW—Thermal and thermoelectric properties of nano materials Prev   Next  

General theories and features of interfacial thermal transport

Hangbo Zhou(周杭波), Gang Zhang(张刚)
Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
Abstract  

A clear understanding and proper control of interfacial thermal transport is important in nanoscale devices. In this review, we first discuss the theoretical methods to handle the interfacial thermal transport problem, such as the macroscopic model, molecular dynamics, lattice dynamics, and quantum transport theories. Then we discuss various effects that can significantly affect the interfacial thermal transport, such as the formation of chemical bonds at interface, defects, interface roughness, strain, substrates, atomic species, mass ratios, and structural orientations. Then importantly, we analyze the role of inelastic scattering at the interface, and discuss its application in thermal rectifications. Finally, the challenges and promising directions are discussed.

Keywords:  thermal conductance      interfacial thermal conductance      nanomaterials  
Received:  27 October 2017      Revised:  04 December 2017      Accepted manuscript online: 
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  44.05.+e (Analytical and numerical techniques)  
Fund: 

Project supported by a grant from the Science and Engineering Research Council (Grant No. 152-70-00017).

Corresponding Authors:  Gang Zhang     E-mail:  zhangg@ihpc.a-star.edu.sg

Cite this article: 

Hangbo Zhou(周杭波), Gang Zhang(张刚) General theories and features of interfacial thermal transport 2018 Chin. Phys. B 27 034401

[1] Yu Z, Pan Y, Shen Y, Wang Z, Ong Z Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y and Wang X 2014 Nat. Commun. 5 5290
[2] Najmaei S, Zou X, Er D, Li J, Jin Z, Gao W, Zhang Q, Park S, Ge L, Lei S, Kono J, Shenoy V B, Yakobson B I, George A, Ajayan P M and Lou J 2014 Nano Lett. 14 1354
[3] Peng X F, Wang X J, Gong Z Q and Chen L Q 2011 Acta Phys. Sin. 60 126802 (in Chinese)
[4] Ye F Q, Li K M and Peng X F 2011 Acta Phys. Sin. 60 36806 (in Chinese)
[5] Cao B Y, Dong R Y, Kong J, Chen H, Xu Y, Yung K L and Cai A 2012 Acta Phys. Sin. 61 46501 (in Chinese)
[6] Pan R Q, Xu Z J and Dai C X 2014 Chin. Phys. Lett. 31 016501
[7] Lu X and Zhong W R 2015 Chin. Phys. Lett. 32 096501
[8] Wei L, Xu Z C, Zheng D Q, Zhang W and Zhong W R 2015 Chin. Phys. Lett. 32 076501
[9] Sun D, Shang C, Liu Z and Gong X 2017 Chin. Phys. Lett. 34 026402
[10] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[11] Cahill D G, Ford W K, Goodson K E, Mahan G D, Majumdar A, Maris H J, Merlin R and Phillpot S R 2003 J. Appl. Phys. 93 793
[12] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A, Maris H J, Phillpot S R, Pop E and Shi L 2014 Appl. Phys. Rev. 1 011305
[13] Li Q, Liu C and Fan S 2009 Nano Lett. 9 3805
[14] Swartz E T and Pohl R O 1989 Rev. Mod. Phys. 61 605
[15] Hopkins P E 2013 ISRN Mechanical Engineering 2013 1
[16] Liu X, Zhang G and Zhang Y W 2015 Nano Research 8 2755
[17] Liu X, Gao J, Zhang G and Zhang Y W 2017 Nano Research 10 2944
[18] Wang Y, Lu Z, Roy A K and Ruan X 2016 J. Appl. Phys. 119 065103
[19] Wu Z H and Xie H Q 2012 Acta Phys. Sin. 61 76502 (in Chinese)
[20] Chen Y, Li D, Lukes J R, Ni Z and Chen M 2005 Phys. Rev. B 72 174302
[21] Yang L, Yang N and Li B 2013 Sci. Rep. 3 01143
[22] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[23] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[24] Li B, Lan J and Wang L 2005 Phys. Rev. Lett. 95 104302
[25] Little W A 1959 Canadian Journal of Physics 37 334
[26] Reddy P, Castelino K and Majumdar A 2005 Appl. Phys. Lett. 87 211908
[27] Landry E S and McGaughey A J H 2009 Phys. Rev. B 80 165304
[28] Persson B N J, Volokitin A I and Ueba H 2011 J. Phys.:Condens. Matter 23 045009
[29] Li M, Wang Y, Zhou J, Ren J and Li B 2015 Euro. Phys. J. B 88 149
[30] Gordiz K and Henry A 2015 New J. Phys. 17 103002
[31] Lumpkin M E, Saslow W M and Visscher W M 1978 Phys. Rev. B 17 4295
[32] Paranjape B V, Arimitsu N and Krebes E S 1987 J. Appl. Phys. 61 888
[33] Young D A and Maris H J 1989 Phys. Rev. B 40 3685
[34] Schelling P K, Phillpot S R and Keblinski P 2002 Appl. Phys. Lett. 80 2484
[35] Wang J S, Wang J and Lü J T 2008 Euro. Phys. J. B 62 381
[36] Meir Y and Wingreen N S 1992 Phys. Rev. Lett. 68 2512
[37] Zeng N and Wang J S 2008 Phys. Rev. B 78 024305
[38] Zhang L, Keblinski P, Wang J S and Li B 2011 Phys. Rev. B 83 064303
[39] Li H, Agarwalla B K and Wang J S 2012 Phys. Rev. E 86 011141
[40] Wang J S, Agarwalla B K, Li H and Thingna J 2013 Frontiers of Physics 9 673
[41] Lü J T, Zhou H, Jiang J W and Wang J S 2015 AIP Adv. 5 053204
[42] Xu Y, Wang J S, Duan W, Gu B L and Li B 2008 Phys. Rev. B 78 224303
[43] Ong Z Y, Zhang G and Zhang Y W 2016 Phys. Rev. B 93 075406
[44] Li X and Yang R 2012 Phys. Rev. B 86 054305
[45] Kozorezov A G, Wigmore J K, Erd C, Peacock A and Poelaert A 1998 Phys. Rev. B 57 7411
[46] Chalopin Y and Volz S 2013 Appl. Phys. Lett. 103 051602
[47] Liu X, Zhang G and Zhang Y W 2016 Nano Research 9 2372
[48] Hu M, Keblinski P, Wang J S and Raravikar N 2008 J. Appl. Phys. 104 083503
[49] Chen J, Zhang G and Li B 2012 J. Appl. Phys. 112 064319
[50] Xu W, Zhang G and Li B 2014 J. Appl. Phys. 116 134303
[51] Hu L, Zhang L, Hu M, Wang J S, Li B and Keblinski P 2010 Phys. Rev. B 81 235427
[52] Han N, Liu H, Zhang J, Gao J and Zhao J 2017 Nanoscale 9 3585
[53] Chen J, Zhang G and Li B 2012 Nano Lett 12 2826
[54] Tian Z, Esfarjani K and Chen G 2012 Phys. Rev. B 86 235304
[55] Liu B, Baimova J A, Reddy C D, Dmitriev S V, Law W K, Feng X Q and Zhou K 2014 Carbon 79 236
[56] Pei Q X, Zhang Y W, Sha Z D and Shenoy V B 2012 Appl. Phys. Lett. 100 101901
[57] Ding Z, Pei Q X, Jiang J W, Huang W and Zhang Y W 2016 Carbon 96 888
[58] Gordiz K and Henry A 2015 Sci. Rep. 5 18361
[59] Yang J, Yang Y, Waltermire S W, Wu X, Zhang H, Gutu T, Jiang Y, Chen Y, Zinn A A, Prasher R, Xu T T and Li D 2011 Nat. Nanotechnol. 7 91
[60] Jiang J W and Wang J S 2011 Europhys. Lett. 96 16003
[61] Li X and Yang R 2012 J. Phys.:Condens. Matter 24 155302
[62] Liu X, Zhang G and Zhang Y W 2014 The Journal of Physical Chemistry C 118 12541
[63] Wang J and Wang S 2007 J. Phys.:Condens. Matter 19 236211
[64] Jones R E, Duda J C, Zhou X W, Kimmer C J and Hopkins P E 2013 Appl. Phys. Lett. 102 183119
[65] Bagri A, Kim S P, Ruoff R S and Shenoy V B 2011 Nano Lett. 11 3917
[66] Chalopin Y, Mingo N, Diao J, Srivastava D and Volz S 2012 Appl. Phys. Lett. 101 221903
[67] Stoner R J, Maris H J, Anthony T R and Banholzer W F 1992 Phys. Rev. Lett. 68 1563
[68] Hohensee G T, Wilson R B and Cahill D G 2015 Nat. Commun. 6 6578
[69] Lyeo H K and Cahill D G 2006 Phys. Rev. B 73 144301
[70] Zhang L, Thingna J, He D, Wang J S and Li B 2013 Europhys. Lett. 103 64002
[71] Le N Q, Polanco C A, Rastgarkafshgarkolaei R, Zhang J, Ghosh A W and Norris P M 2017 Phys. Rev. B 95 245417
[72] Ming Y, Li H M and Ding Z J 2016 Phys. Rev. E 93 032127
[73] Hu M, Keblinski P and Li B 2008 Appl. Phys. Lett. 92 211908
[74] Zhang L, Lü J T, Wang J S and Li B 2013 J. Phys.:Condens. Matter 25 445801
[75] Wang L and Li B 2011 Phys. Rev. E 83 061128
[76] Lan J, Wang L E I and Li B 2007 International Journal of Modern Physics B 21 4013
[77] Thingna J, Wang J S and Hanggi P 2013 Phys. Rev. E 88 052127
[78] Zhou H, Thingna J, Wang J S and Li B 2015 Phys. Rev. B 91 045410
[79] Giri A, Gaskins J T, Donovan B F, Szwejkowski C, Warzoha R J, Rodriguez M A, Ihlefeld J and Hopkins P E 2015 J. Appl. Phys. 117 105105
[80] Sadasivam S, Waghmare U V and Fisher T S 2015 J. Appl. Phys. 117 134502
[81] Lu T, Zhou J, Nakayama T, Yang R and Li B 2016 Phys. Rev. B 93 085433
[82] Wang Y, Ruan X and Roy A K 2012 Phys. Rev. B 85 205311
[83] Lu Z, Wang Y and Ruan X 2016 Phys. Rev. B 93 064302
[84] Liu X, Zhang G and Zhang Y W 2016 Nano Lett. 16 4954
[1] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[2] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[3] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
[4] High pressure structural phase transitions of TiO2 nanomaterials
Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2016, 25(7): 076107.
[5] Material properties dependent on the thermal transport in a cylindrical nanowire
Zhang Yong (张勇), Xie Zhong-Xiang (谢忠祥), Deng Yuan-Xiang (邓元祥), Yu Xia (喻霞), Li Ke-Min (李科敏). Chin. Phys. B, 2015, 24(12): 126302.
[6] Thermal conductance in a two-slit quantum waveguide
Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) . Chin. Phys. B, 2012, 21(2): 026301.
No Suggested Reading articles found!