Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026802    DOI: 10.1088/1674-1056/27/2/026802
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Thermoelectric properties of two-dimensional hexagonal indium-VA

Jing-Yun Bi(毕京云)1, Li-Hong Han(韩利红)1, Qian Wang(王倩)1, Li-Yuan Wu(伍力源)1, Ruge Quhe(屈贺如歌)1,2, Peng-Fei Lu(芦鹏飞)1,3
1. State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3. State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  The electrical properties and thermoelectric (TE) properties of monolayer In-VA are investigated theoretically by combining first-principles method with Boltzmann transport theory. The ultralow intrinsic thermal conductivities of 2.64 W·m-1·K-1 (InP), 1.31 W·m-1·K-1 (InAs), 0.87 W·m-1·K-1 (InSb), and 0.62 W·m-1 K-1 (InBi) evaluated at room temperature are close to typical thermal conductivity values of good TE materials (κ < 2 W·m-1·K-1). The maximal ZT values of 0.779, 0.583, 0.696, 0.727, and 0.373 for InN, InP, InAs, InSb, and InBi at p-type level are calculated at 900 K, which makes In-VA potential TE material working at medium-high temperature.
Keywords:  thermoelectric properties      two-dimensional In-VA      figure of merit  
Received:  06 September 2017      Revised:  04 November 2017      Accepted manuscript online: 
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  84.60.Bk (Performance characteristics of energy conversion systems; figure of merit)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675032 and 11604019) and the National Basic Research Program of China (Grant No. 2014CB643900).
Corresponding Authors:  Ruge Quhe, Peng-Fei Lu     E-mail:  quheruge@bupt.edu.cn;photon.bupt@gmail.com
About author:  68.65.-k; 63.22.-m; 73.40.Kp; 84.60.Bk

Cite this article: 

Jing-Yun Bi(毕京云), Li-Hong Han(韩利红), Qian Wang(王倩), Li-Yuan Wu(伍力源), Ruge Quhe(屈贺如歌), Peng-Fei Lu(芦鹏飞) Thermoelectric properties of two-dimensional hexagonal indium-VA 2018 Chin. Phys. B 27 026802

[1] Novoselov K S, Geim A K, Morozov S V, Dubonos S V, Zhang Y and Jiang D 2004 Science 306 660
[2] Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Adv. Mater. 21 2889
[3] Nag A, Raidongia K, Hembram K P, Datta R, Waghmare U V and Rao C N R 2010 ACS Nano 4 1539
[4] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X and Zhang Y 2014 Nat. Nanotechnol. 9 372
[5] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Peide D Y 2014 ACS Nano 8 4033
[6] Jing Y, Zhang X and Zhou Z W 2016 Wiley Interdiscip. Rev. Comput. Mol. Sci. 6 5
[7] Aufray B, Kara A, Vizzini S, Oughaddou H, Léandri C, Ealet B and Le Lay G 2010 Appl. Phys. Lett. 96 183102
[8] Kara A, Enriquez H, Seitsonen A P, Voon L L Y, Vizzini S, Aufray B and Oughaddou H 2012 Surf. Sci. Rep. 67 1
[9] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[10] Zhang G and Zhang Y W 2015 Mech. Mater. 91 382
[11] Dragoman D and Dragoman M 2007 Appl. Phys. Lett. 91 203116
[12] Matusalem F, Marquez M, Teles L K and Bechstedt F 2015 Phys. Rev. B 92 045436
[13] Zhang G and Zhang Y W 2017 Chin. Phys. B 26 034401
[14] Sztein A, Ohta H, Sonoda J, Ramu A, Bowers J E, DenBaars S P and Nakamura S 2009 Appl. Phys. Express 2 111003
[15] Kaiwa N, Hoshino M, Yagainuma T, Izaki R, Yamaguchi S and Yamamoto A 2007 Thin Solid Films 515 4501
[16] Pantha B N, Dahal R, Li J, Lin J Y, Jiang H X and Pomrenke G 2008 Appl. Phys. Lett. 92 042112
[17] Yamaguchi S, Iwamura Y and Yamamoto A 2003 Appl. Phys. Lett. 82 2065
[18] Tong H, Zhao H, Handara V A, Herbsommer J A and Tansu N 2009 Proc. SPIE-Int. Soc. Opt. Eng. 6 309
[19] Sztein A, Haberstroh J, Bowers J E, DenBaars S P and Nakamura S 2013 J. Appl. Phys. 113 183707
[20] Goyal V, Teweldebrhan D and Balandin A A 2010 Appl. Phys. Lett. 97 133117
[21] Fan Z, Zheng J, Wang H Q and Zheng J C 2012 Nanoscale Res. Lett. 7 570
[22] Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y and Xin J 2017 J. Mater. Chem. A 5 5163
[23] Zhuang H L, Singh A K and Hennig R G 2013 Phys. Rev. B 87 165415
[24] Şahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[25] Singh A K, Zhuang H L and Hennig R G 2014 Phys. Rev. B 89 245431
[26] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[27] Tsipas P, Kassavetis S, Tsoutsou D, Xenogiannopoulou E, Golias E, Giamini S A, Grazianetti C, Chiappe D, Molle A, Fanciulli M and Dimoulas A 2013 Appl. Phys. Lett. 103 251605
[28] Huang Z, Lü T Y, Wang H Q, Yang S W and Zheng J C 2017 Comput. Mater. Sci. 130 232
[29] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[32] Li W, Lindsay L, Broido D A, Stewart D A and Mingo N 2012 Phys. Rev. B 86 174307
[33] Madsen G K and Singh D J 2006 Comput. Phys. Commun. 175 67
[34] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[35] Crisostomo C P, Yao L Z, Huang Z Q, Hsu C H, Chuang F C, Lin H, Albao M A and Bansil A 2015 Nano Lett. 15 6568
[36] Ding G, Gao G Y and Yao K L 2014 J. Phys. D:Appl. Phys. 47 385305
[37] Hong A J, Li L, Zhu H X, Yan Z B, Liu J M and Ren Z F 2015 J. Mater. Chem. A 3 13365
[38] Wang F Q, Zhang S, Yu J and Wang Q 2015 Nanoscale 7 15962
[39] Kumar Sand Schwingenschlögl U 2015 Chem. Mater. 27 1278
[40] Ziman J M 1960 Electrons and Phonons:The theory of Transport Phenomena in Solids (Oxford:Oxford University Press)
[41] Yang J, Yuan Q, Deng H X, Wei S H and Yakobson B I 2017 J. Phys. Chem. C 121 123
[42] Yu J, Sun Q and Jena P 2016 International Symposium on Clusters and Nanomaterials, pp. 101740C-101740C
[43] D'Souza R and Mukherjee S 2016 J. Phys. Conf. Ser. 759 12040
[44] Zhang L and Singh D J 2010 Phys. Rev. B 81 245119
[45] Guan X, Lu P, Wu L, Han L, Liu G, Song Y and Wang S 2015 J. Alloys Compd. 643 116
[46] Li H Z, Li R P, Liu J H and Huang M J 2015 Physica B:Condens. Matter 479 1
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[3] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[4] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[5] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[6] Facile fabrication of highly flexible, porous PEDOT: PSS/SWCNTs films for thermoelectric applications
Fu-Wei Liu(刘福伟), Fei Zhong(钟飞), Shi-Chao Wang(王世超), Wen-He Xie(谢文合), Xue Chen(陈雪), Ya-Ge Hu(胡亚歌), Yu-Ying Ge(葛钰莹), Yuan Gao(郜源), Lei Wang(王雷), and Zi-Qi Liang(梁子骐). Chin. Phys. B, 2022, 31(2): 027303.
[7] N-type core-shell heterostructured Bi2S3@Bi nanorods/polyaniline hybrids for stretchable thermoelectric generator
Lu Yang(杨璐), Chenghao Liu(刘程浩), Yalong Wang(王亚龙), Pengcheng Zhu(朱鹏程), Yao Wang(王瑶), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(2): 028204.
[8] Energy band and charge-carrier engineering in skutterudite thermoelectric materials
Zhiyuan Liu(刘志愿), Ting Yang(杨婷), Yonggui Wang(王永贵), Ailin Xia(夏爱林), and Lianbo Ma(马连波). Chin. Phys. B, 2022, 31(10): 107303.
[9] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[12] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[13] Photonic-plasmonic hybrid microcavities: Physics and applications
Hongyu Zhang(张红钰), Wen Zhao(赵闻), Yaotian Liu(刘耀天), Jiali Chen(陈佳丽), Xinyue Wang(王欣月), and Cuicui Lu(路翠翠). Chin. Phys. B, 2021, 30(11): 117801.
[14] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[15] Low lattice thermal conductivity and high figure of merit in p-type doped K3IO
Weiqiang Wang(王巍强), Zhenhong Dai(戴振宏), Qi Zhong(钟琦), Yinchang Zhao(赵银昌), and Sheng Meng(孟胜). Chin. Phys. B, 2020, 29(12): 126501.
No Suggested Reading articles found!