Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114212    DOI: 10.1088/1674-1056/27/11/114212
Special Issue: TOPICAL REVIEW — Nanolasers
TOPICAL REVIEW—Nanolasers Prev   Next  

Square microcavity semiconductor lasers

Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴)
State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors & College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

Square microcavities, which support whispering-gallery modes with total internal reflections, can be employed as high-quality laser resonators for fabricating compact, low-threshold semiconductor lasers. In this paper, we review the recent progress of square microcavity semiconductor lasers. The characteristics of confined optical modes in the square microcavities are introduced briefly. Based on the mode properties of the square microcavities, dual-mode lasers with tunable wavelength intervals are realized for generating microwave signals. Furthermore, deformed square microcavity lasers with the sidewalls replaced by circular sides are proposed and experimentally demonstrated to enhance the mode confinement and increase the dual-mode interval to the THz range. In order to further reduce the device size, metal-confined wavelength-scale square cavity lasers are also demonstrated.

Keywords:  square microcavity      whispering-gallery modes      semiconductor lasers  
Received:  09 January 2018      Revised:  14 June 2018      Accepted manuscript online: 
PACS:  42.55.Sa (Microcavity and microdisk lasers)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61527823 and 61377105).

Corresponding Authors:  Yongzhen Huang     E-mail:  yzhuang@semi.ac.cn

Cite this article: 

Yuede Yang(杨跃德), Haizhong Weng(翁海中), Youzeng Hao(郝友增), Jinlong Xiao(肖金龙), Yongzhen Huang(黄永箴) Square microcavity semiconductor lasers 2018 Chin. Phys. B 27 114212

[1] Vahala K J 2003 Nature 424 839
[2] He L N, Ozdemir S K and Yang L 2013 Laser Photon. Rev. 7 60
[3] Cao H and Wiersig J 2015 Rev. Mod. Phys. 87 61
[4] Jiang X F, Shao L B, Zhang S X, Yi X, Wiersig J, Wang L, Gong Q H, Loncar M, Yang L and Xiao Y F 2017 Science 358 344
[5] Bulovic V, Kozlov V G, Khalfin V B and Forrest S R 1998 Science 279 553
[6] Jiang X F, Zou C L, Wang L, Gong Q H and Xiao Y F 2016 Laser Photon. Rev. 10 40
[7] Mccall S L, Levi A F J, Slusher R E, Pearton S J and Logan R A 1992 Appl. Phys. Lett. 60 289
[8] Fujita M, Ushigome R, Baba T, Matsutani A, Koyama F and Iga K 2001 Jpn. J. Appl. Phys. 40 5338
[9] Yang Y D, Huang Y Z and Chen Q 2007 Phys. Rev. A 75 013817
[10] Huang Y Z and Yang Y D 2008 J. Light. Technol. 26 1411
[11] Jaffrennou P, Claudon J, Bazin M, Malik N S, Reitzenstein S, Worschech L, Kamp M, Forchel A and Gerard J M 2010 Appl. Phys. Lett. 96 071103
[12] Yang Y D, Huang Y Z, Guo W H, Lu Q Y and Donegan J F 2010 Opt. Express 18 13057
[13] Munsch M, Claudon J, Malik N S, Gilbert K, Grosse P, Gerard J M, Albert F, Langer F, Schlereth T, Pieczarka M M, Hofling S, Kamp M, Forchel A and Reitzenstein S 2012 Appl. Phys. Lett. 100 031111
[14] Yang Y D, Xiao J L, Liu B W and Huang Y Z 2015 J. Opt. Soc. Am. B 32 439
[15] Long H, Yang W, Ying L Y and Zhang B P 2017 Chin. Phys. B 26 054211
[16] Nockel J U and Stone A D 1997 Nature 385 45
[17] Chern G D, Tureci H E, Stone A D, Chang R K, Kneissl M and Johnson N M 2003 Appl. Phys. Lett. 83 1710
[18] Wiersig J and Hentschel M 2008 Phys. Rev. Lett. 100 033901
[19] Song Q H, Ge L, Stone A D, Cao H, Wiersig J, Shim J B, Unterhinninghofen J, Fang W and Solomon G S 2010 Phys. Rev. Lett. 105 103902
[20] Levi A F J, Slusher R E, Mccall S L, Glass J L, Pearton S J and Logan R A 1993 Appl. Phys. Lett. 62 561
[21] Boriskina S V, Benson T M, Sewell P and Nosich A I 2006 IEEE J. Sel. Top. Quantum Electron. 12 52
[22] Jin X, Yang Y D, Xiao J L and Huang Y Z 2015 IEEE J. Quantum Electron. 51 6500208
[23] Wang X Y, Chen H Z, Li Y, Li B and Ma R M 2016 Chin. Phys. B 25 124211
[24] Yang Y D, Wang S J and Huang Y Z 2009 Opt. Express 17 23010
[25] Song Q H, Ge L, Redding B and Cao H 2012 Phys. Rev. Lett. 108 243902
[26] Yang Y D, Zhang Y, Huang Y Z and Poon A W 2014 Opt. Express 22 824
[27] Wang S J, Lin J D, Huang Y Z, Yang Y D, Che K J, Xiao J L, Du Y and Fan Z C 2010 IEEE Photon. Technol. Lett. 22 1349
[28] Poon A W, Courvoisier F and Chang R K 2001 Opt. Lett. 26 632
[29] Huang Y Z, Guo W H and Wang Q M 2001 IEEE J. Quantum Electron. 37 100
[30] Guo W H, Huang Y Z, Lu Q Y and Yu L J 2003 IEEE J. Quantum Electron. 39 1563
[31] Wiersig J 2003 Phys. Rev. A 67 023807
[32] Yang Y D and Huang Y Z 2007 Phys. Rev. A 76 023822
[33] Wang S J, Huang Y Z, Yang Y D, Hu Y H, Xiao J L and Du Y 2010 Chin. Phys. Lett. 27 014213
[34] Huang Y X, Qiu W B, Lin S X, Zhao J, Chen H B, Wang J X, Kan Q and Pan J Q 2016 Sci. Chin. Inform. Sci. 59 042413
[35] Guo W H, Huang Y Z, Lu Q Y and Yu L 2004 IEEE Photon. Technol. Lett. 16 479
[36] Huang Y Z, Chen Q, Guo W H, Lu Q Y and Yu L J 2006 IEEE J. Sel. Top. Quantum Electron. 12 59
[37] Yang Y D and Huang Y Z 2007 IEEE J. Quantum Electron. 43 497
[38] Yang Y D, Huang Y Z and Wang S J 2009 IEEE J. Quantum Electron. 45 1529
[39] Huang Y Z, Guo W H and Wang Q M 2000 Appl. Phys. Lett. 77 3511
[40] Moon H J, An K and Lee J H 2003 Appl. Phys. Lett. 82 2963
[41] Fong C Y and Poon A W 2004 Opt. Express 12 4864
[42] Huang Y Z, Chen Q, Guo W H and Yu L J 2005 IEEE Photon. Technol. Lett. 17 2589
[43] Chen Q, Yang Y D and Huang Y Z 2007 Opt. Lett. 32 967
[44] Hattori H T, Liu D Y, Tan H H and Jagadish C 2009 IEEE Photon. Technol. Lett. 21 359
[45] Liu D Y, Hattori H T, Fu L, Tan H H and Jagadish C 2010 J. Phys. D:Appl. Phys. 43 135102
[46] Ma R M, Oulton R F, Sorger V J, Bartal G and Zhang X A 2011 Nat. Mater. 10 110
[47] Bittner S, Bogomolny E, Dietz B, Miski-Oglu M and Richter A 2013 Phys. Rev. E 88 062906
[48] Lee C W, Wang Q, Lai Y C, Ng D K T and Ng S K 2014 IEEE Photon. Technol. Lett. 26 2442
[49] Bittner S, Lafargue C, Gozhyk I, Djellali N, Milliet L, Hickox-Young D T, Ulysse C, Bouche D, Dubertr R, Bogomolny E, Zyss J and Lebental M 2016 Europhys. Lett. 113 54002
[50] Huang Y Z, Che K J, Yang Y D, Wang S J, Du Y and Fan Z C 2008 Opt. Lett. 33 2170
[51] Yang Y D and Huang Y Z 2016 J. Phys. D:Appl. Phys. 49 253001
[52] Guo W H, Huang Y Z, Lu Q Y and Vu L J 2003 IEEE J. Quantum Electron. 39 1106
[53] Guo W H, Huang Y Z, Lu Q Y and Yu L J 2004 Chin. Phys. Lett. 21 79
[54] Yang Y D, Huang Y Z and Chen Q 2007 IEEE Photon. Technol. Lett. 19 1831
[55] Long H, Huang Y Z, Ma X W, Yang Y D, Xiao J L, Zou L X and Liu B W 2015 Opt. Lett. 40 3548
[56] Weng H Z, Huang Y Z, Yang Y D, Ma X W, Xiao J L and Du Y 2017 Phys. Rev. A 95 013833
[57] Tang M, Huang Y Z, Yang Y D, Weng H Z and Xiao Z X 2017 Photon. Res. 5 695
[58] Liu B W, Huang Y Z, Long H, Yang Y D, Xiao J L, Zou L X and Du Y 2015 IEEE Photon. Technol. Lett. 27 1853
[59] Liao M L, Huang Y Z, Weng H Z, Han J Y, Xiao Z X, Xiao J L and Yang Y D 2017 Opt. Lett. 42 4251
[60] Weng H Z, Wada O, Han J Y, Xiao J L, Yang Y D, Huang Y Z, Li J, Xiong B, Sun C Z and Luo Y 2017 Electron. Lett. 53 939
[61] Weng H Z, Huang Y Z, Ma X W, Wang F L, Liao M L, Yang Y D and Xiao J L 2017 IEEE Photon. Technol. Lett. 29 1931
[62] Guo C C, Xiao J L, Yang Y D, Zhu Z H and Huang Y Z 2016 IEEE Photon. Technol. Lett. 28 217
[63] Ding K, Liu Z C, Yin L J, Hill M T, Marell M J H, van Veldhoven P J, Noetzel R and Ning C Z 2012 Phys. Rev. B 85 041301
[64] Ding K, Hill M T, Liu Z C, Yin L J, van Veldhoven P J and Ning C Z 2013 Opt. Express 21 4728
[65] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Notzel R, Ning C Z and Smit M K 2009 Opt. Express 17 11107
[66] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[67] Xiao Z X, Huang Y Z, Yang Y D, Tang M and Xiao J L 2017 Opt. Lett. 42 3173
[68] Ma X W, Huang Y Z, Yang Y D, Xiao J L, Weng H Z and Xiao Z X 2016 Appl. Phys. Lett. 109 071102
[69] Ma X W, Huang Y Z, Yang Y D, Weng H Z, Wang F L, Tang M, Xiao J L and Du Y 2017 Opt. Lett. 42 2291
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[3] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[4] Electrically pumped metallic and plasmonic nanolasers
Martin T Hill. Chin. Phys. B, 2018, 27(11): 114210.
[5] Theoretical study of the optical gain characteristics of a Ge1-xSnx alloy for a short-wave infrared laser
Zhang Dong-Liang (张东亮), Cheng Bu-Wen (成步文), Xue Chun-Lai (薛春来), Zhang Xu (张旭), Cong Hui (丛慧), Liu Zhi (刘智), Zhang Guang-Ze (张广泽), Wang Qi-Ming (王启明). Chin. Phys. B, 2015, 24(2): 024211.
[6] Dispersion compensation in an open-loop all-optical chaotic communication system
Liu Hui-Jie(刘慧杰), Ren Bin(任斌), and Feng Jiu-Chao(冯久超) . Chin. Phys. B, 2012, 21(4): 040501.
[7] High-speed chaotic communication using an optical fibre ring as a key
Zou Lin(邹琳), Feng Ye(冯野), Yang Yi-Biao(杨毅彪), Wang An-Bang(王安帮), Yang Ling-Zhen(杨玲珍), and Zhang Jian-Zhong(张建忠) . Chin. Phys. B, 2011, 20(9): 094209.
No Suggested Reading articles found!