Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 104205    DOI: 10.1088/1674-1056/27/10/104205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling

Wen-Yan Wang(王文岩)1, Ning Sui(隋宁)1, Li-Quan Zhang(张里荃)1, Ying-Hui Wang(王英惠)1, Lin Wang(王琳)1, Quan Wang(王权)1, Jiao Wang(王娇)1, Zhi-Hui Kang(康智慧)1, Yan-Qiang Yang(杨延强)3, Qiang Zhou(周强)2, Han-Zhuang Zhang(张汉壮)1
1 Femtosecond Laser Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries(Ministry of Education), College of Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China;
3 National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  

The energy dissipation mechanism of energetic materials (EMs) is very important for keeping safety. We choose nitrobenzene as a model of EM and employ transient absorption (TA) spectroscopy and time-resolved coherent anti-stokes Raman scattering (CARS) to clarify its energy dissipation mechanism. The TA data confirms that the excited nitrobenzene spends about 16 ps finishing the twist intramolecular charge transfer from benzene to nitro group, and dissipates its energy through the rapid vibration relaxation in the initial excited state. And then the dynamics of vibrational modes (VMs) in the ground state of nitrobenzene, which are located at 682 cm-1 (v1), 854 cm-1 (v2), 1006 cm-1 (v3), and 1023 cm-1 (v4), is scanned by CARS. It exhibits that the excess energy of nitrobenzene on the ground state would further dissipate through intramolecular vibrational redistribution based on the vibrational cooling of v1 and v2 modes, v1 and v4 modes, and v3 and v4 modes. Moreover, the vibration-vibration coupling depends not only on the energy levels of VMs, but also on the spatial position of chemical bonds relative to the VM.

Keywords:  energy dissipation      charge transfer      transient absorption      coherent anti-stokes Raman scattering (CARS)  
Received:  29 March 2018      Revised:  21 June 2018      Accepted manuscript online: 
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Dr (Stimulated Raman scattering; CARS)  
  42.65.-k (Nonlinear optics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 21573094, 11274142, 11474131, 11574112, and 51502109), the National Found for Fostering Talents of Basic Science, China (Grant No. J1103202), the Science Challenging Program (Grant No. JCKY2016212A501), and China Scholarship Council (CSC) during a visit of Ning Sui (Grant No. 201706175038) to MPIA is also acknowledged.

Corresponding Authors:  Ying-Hui Wang, Han-Zhuang Zhang     E-mail:  yinghui_wang@jlu.edu.cn;zhanghz@jlu.edu.cn

Cite this article: 

Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮) Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling 2018 Chin. Phys. B 27 104205

[1] Yu Z and Bernstein E R 2013 J. Phys. Chem. A 117 1756
[2] Guo Y Q, Greenfield M, Bhattacharya A and Bernstein E R 2007 J. Chem. Phys. 127 154301
[3] Zhurova E A, Tsirelson V G, Stash A I, Yakovlev M V and Pinkerton A A 2004 J. Phys. Chem. B 108 20173
[4] Banerji N, Cowan S, Lecierc M, Vauthey E and Heeger A J 2010 J. Am. Chem. Soc. 132 17459
[5] Boyarkin O V, Rizzo T R and Perry D S 1999 J. Chem. Phys. 110 11346
[6] Dlott D D and Fayer M D 1990 J. Chem. Phys. 92 3798
[7] Chen S, Tolbert W A and Dlott D D 1994 J. Phys. Chem. 98 7759
[8] Zander M, Breymann U, Dreeskamp H and Koch E 1977 Z. Naturforsch. A 32 1561
[9] Gerrard D L and Maddams W F 1976 Appl. Spectrosc. 30 554
[10] Liu Q H, Wang Y H, Sui N, Wang Y T, Chi X C, Wang Q Q, Chen Y, Ji W Y, Zou L and Zhuang H Z 2016 Sci. Rep. 6 29442
[11] Wang Y H, Peng Y J, He X, Song Y F and Yang Y Q 2009 Chin. Phys. B 18 1463
[12] Namboodiri M, Kazemi M M, Khan T Z, Materny A and Kiefer J 2014 J. Am. Chem. Soc. 136 6136
[13] Takezaki M, Hirota H and Terazima M 1998 J. Chem. Phys. 108 4685
[14] Chi X C, Ni M C, Wang Y H, Sui N, Wang W Y, Lu R, Yang Y Q, Ji W Y and Zhang H Z 2017 J. Photoch. Photobio. A 346 221
[15] Huang T H, Hou J Q, Kang Z H, Wang Y H, Lu R, Zhou H P, Zhao X, Ma Y G and Zhang H Z 2013 J. Photoch. Photobio. A 261 41
[16] Sinha H K and Yates K 1990 J. Chem. Phys. 93 7085
[17] Nagakura S, Kojima M and Maruyama Y 1964 J. Mol. Spec. 13 174
[18] Retting W 1986 Angew. Chem. Int. Ed. 25 971
[19] Zhu X M, Zhang S Q, Zheng X and Phillips D L 2005 J. Phys. Chem. A 109 3086
[20] Yu G Y, Zeng Y Y, Guo W C, Wu H L, Zhu G B, Zheng Z Y, Zheng X X, Song Y F and Yang Y Q 2017 J. Phys. Chem. A 121 2565
[21] Kano H and Hamaguchi H 2004 Appl. Phys. Lett. 85 4298
[1] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[2] Computational design of ratiometric two-photon fluorescent Zn2+ probes based on quinoline and di-2-picolylamine moieties
Zhe Shao(邵哲), Wen-Ying Zhang(张纹莹), and Ke Zhao(赵珂). Chin. Phys. B, 2022, 31(5): 053302.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Ultrafast proton transfer dynamics of 2-(2'-hydroxyphenyl)benzoxazole dye in different solvents
Simei Sun(孙四梅), Song Zhang(张嵩), Jiao Song(宋娇), Xiaoshan Guo(郭小珊), Chao Jiang(江超), Jingyu Sun(孙静俞), and Saiyu Wang(王赛玉). Chin. Phys. B, 2022, 31(2): 027803.
[5] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[6] Extended phase diagram of La1-xCaxMnO3 by interfacial engineering
Kexuan Zhang(张可璇), Lili Qu(屈莉莉), Feng Jin(金锋), Guanyin Gao(高关胤), Enda Hua(华恩达), Zixun Zhang(张子璕), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2021, 30(12): 126802.
[7] Ultrafast carrier dynamics of Cu2O thin film induced by two-photon excitation
Jian Liu(刘建), Jing Li(李敬), Kai-Jun Mu(牧凯军), Xin-Wei Shi(史新伟), Jun-Qiao Wang(王俊俏), Miao Mao(毛淼), Shu Chen(陈述), and Er-Jun Liang(梁二军). Chin. Phys. B, 2021, 30(11): 114205.
[8] Novel CMOS image sensor pixel to improve charge transfer speed and efficiency by overlapping gate and temporary storage diffusing node
Cui Yang(杨翠), Guo-Liang Peng(彭国良), Wei Mao(毛维), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(1): 018502.
[9] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[10] Tunable metal-insulator transition in LaTiO3/CaVO3 superlattices: A theoretical study
Ya-Kui Weng(翁亚奎), Meng-Lan Shen(沈梦兰), Jie Li(李杰), and Xing-Ao Li(李兴鳌). Chin. Phys. B, 2020, 29(12): 127303.
[11] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[12] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[13] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[14] Ab initio investigation of excited state dual hydrogen bonding interactions and proton transfer mechanism for novel oxazoline compound
Yu-Sheng Wang(王玉生), Min Jia(贾敏), Qiao-Li Zhang(张巧丽), Xiao-Yan Song(宋晓燕), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2019, 28(10): 103105.
[15] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
No Suggested Reading articles found!