Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080304    DOI: 10.1088/1674-1056/26/8/080304
GENERAL Prev   Next  

Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices

Huafeng Zhang(张华峰)1,2, Fang Chen(陈方)1,2, Chunchao Yu(郁春潮)1,2, Lihui Sun(孙利辉)1,2, Dahai Xu(徐大海)2
1 Institute of Quantum Optics and Information Photonics, Yangtze University, Jingzhou 434023, China;
2 School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China
Abstract  

Properties of the ground-state solitons, which exist in the spin-orbit coupling (SOC) Bose-Einstein condensates (BEC) in the presence of optical lattices, are presented. Results show that several system parameters, such as SOC strength, lattice depth, and lattice frequency, have important influences on properties of ground state solitons in SOC BEC. By controlling these parameters, structure and spin polarization of the ground-state solitons can be effectively tuned, so manipulation of atoms may be realized.

Keywords:  spin-orbit coupling      Bose-Einstein condensates      optical lattices  
Received:  19 February 2017      Revised:  12 April 2017      Accepted manuscript online: 
PACS:  03.75.Be (Atom and neutron optics)  
  03.75.Hh (Static properties of condensates; thermodynamical, statistical, and structural properties)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11547007 and 11304024), the Yangtze Youth Fund (Grant No. 2016cqn55), and the Yangtze Fund for Youth Teams of Science and Technology Innovation (Grant No. 2015cqt03).

Corresponding Authors:  Huafeng Zhang     E-mail:  hfzhang@yangtzeu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海) Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices 2017 Chin. Phys. B 26 080304

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Li Z and Cao H 2014 Acta Phys. Sin. 63 110306 (in Chinese)
[3] Gong M, Chen G, Jia S T and Zhang C W 2012 Phys. Rev. Lett. 109 105302
[4] Zhang Y C, Yu Z Q, Ng T K, Zhang S Z, Pitaevskii L and Stringari S 2016 Phys. Rev. A 94 033635
[5] Song S, Sun R, Zhao H, Wang X and Han B 2016 Chin. Phys. B 25 040305
[6] Xu Z H, Cole W S and Zhang S Z 2014 Phys. Rev. A 89 051604
[7] Xie W F, He Y and Bao C 2015 Chin. Phys. B 24 060305
[8] Sinova J, Valenzuela S O, Wunderlich J, Back C H and Jungwirth T 2015 Rev. Mod. Phys. 87 1213
[9] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[10] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[11] Zai H 2015 Rep. Prog. Phys. 78 026001
[12] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[13] Zhang Y P, Chen G and Zhang C W 2013 Sci. Rep. 3 1937
[14] Li Y, Qu C L, Zhang Y P and Zhang C W 2015 Phys. Rev. A 92 013635
[15] Kasamatsu K 2015 Phys. Rev. A 92 063608
[16] Kartashov Y V, Konotop V V and Zezyulin D A 2014 Phys. Rev. A 90 063621
[17] Zhang Y P and Zhang C W 2013 Phys. Rev. A 87 023611
[18] Pan J S, Zhang W, Yi W and Guo G C 2016 Phys. Rev. A 94 043619
[19] Olson A J, Wang S, Niffenegger R J, Li C, Greene C H and Chen Y P 2014 Phys. Rev. A 90 013616
[20] Zhang S Z, Cole W S, Paramekanti A and Trivedi N 2015 Annual Review of Cold Atoms and Molecules 3 135-179
[21] Wu Z, Zhang L, Sun W, Xu X, Wang B,Ji S, Deng Y, Chen S, Liu X and Pan J W 2016 Science 354 83
[22] Xu Y, Zhang Y P and Wu B 2012 Phys. Rev. A 87 013614
[23] Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S and Pan J W 2012 Phys. Rev. Lett. 109 115301
[24] Kartashov Y V, Konotop V V, Zezyulin D A and Torner L 2016 Phys. Rev. Lett. 117 215301
[25] Khamehchi M A, Hossain K, Mossman M E, Zhang Y P, Busch T, Forbes M M and Engels P 2017 Phys. Rev. Lett. 118 155301
[26] Stringari S 2017 Phys. Rev. Lett. 118 145302
[27] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[28] Pethick C J and Smith H 2008 Bose-Einstein condensate in dilute gases, 2nd edn. (Cambridge: Cambridge University Press)
[29] Muryshev A, Shlyapnikov G V, Ertmer W, Sengstock K and Lewenstein M 2002 Phys. Rev. Lett. 89 110401
[30] Morgan T and Busch T 2013 Phys. Rev. A 88 063610
[31] Rosenbusch P, Bretin V and Dalibard J 2002 Phys. Rev. Lett. 89 200403
[32] Serafini S, Barbiero M, Debortoli M, Donadello S, Larcher F, Dalfovo.F, Lamporesi G and Ferrari G 2015 Phys. Rev. Lett. 115 170402
[33] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[34] Castellanos E and Rivas J I 2015 Phys. Rev. D 91 084019
[35] Malomed B A, Nistazakis H E, Frantzeskakis D J and Kevrekidis P G 2004 Phys. Rev. A 70 043616.
[36] Coen S and Haelterman M 2001 Phys. Rev. Lett. 87 140401
[37] Wu L, Zhang J F and Li L 2007 New J. Phys. 9 69
[38] Bhat I A, Mithun T, Malomed B A and Porsezian K 2015 Phys. Rev. A 92 063606
[39] Zhang Y P, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
[40] Kartashov Y V, Konotop V V and Abdullaev F K 2013 Phys. Rev. Lett. 111 060402
[41] Gautam S and Adhikari S K 2017 Phys. Rev. A 95 013608
[42] Wen L, Sun Q, Chen Y, Wang D, Hu J, Chen H, Liu W M, Juzeliūnas G, Malomed B A and Ji A 2016 Phys. Rev. A 94 061602
[43] Chin C, Grimm R, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[44] Li Y, Pitaevskii L P and Stringari S 2012 Phys. Rev. Lett. 108 225301
[45] Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E 62 7438
[46] Bao W, Chern I L and Lim F Y 2006 J. Comput. Phys. 219 836
[47] Yang J K and Lakoba T 2008 Stud. Appl. Math. 120 265
[1] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[2] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[3] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[4] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[5] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[6] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[7] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[8] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[9] Gate tunable Rashba spin-orbit coupling at CaZrO3/SrTiO3 heterointerface
Wei-Min Jiang(姜伟民), Qiang Zhao(赵强), Jing-Zhuo Ling(凌靖卓), Ting-Na Shao(邵婷娜), Zi-Tao Zhang(张子涛), Ming-Rui Liu(刘明睿), Chun-Li Yao(姚春丽), Yu-Jie Qiao(乔宇杰), Mei-Hui Chen(陈美慧), Xing-Yu Chen(陈星宇), Rui-Fen Dou(窦瑞芬), Chang-Min Xiong(熊昌民), and Jia-Cai Nie(聂家财). Chin. Phys. B, 2022, 31(6): 066801.
[10] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[11] Asymmetric Fraunhofer pattern in Josephson junctions from heterodimensional superlattice V5S8
Juewen Fan(范珏雯), Bingyan Jiang(江丙炎), Jiaji Zhao(赵嘉佶), Ran Bi(毕然), Jiadong Zhou(周家东), Zheng Liu(刘政), Guang Yang(杨光), Jie Shen(沈洁), Fanming Qu(屈凡明), Li Lu(吕力), Ning Kang(康宁), and Xiaosong Wu(吴孝松). Chin. Phys. B, 2022, 31(5): 057402.
[12] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[13] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[14] SU(3) spin-orbit coupled fermions in an optical lattice
Xiaofan Zhou(周晓凡), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 017102.
[15] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
No Suggested Reading articles found!