Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067201    DOI: 10.1088/1674-1056/26/6/067201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices

Zhiyuan Ma(马志远)1, Ying Li(李莹)1, Xian-Jiang Song(宋贤江)1, Zhi Yang(杨致)1, Li-Chun Xu(徐利春)1, Ruiping Liu(刘瑞萍)1, Xuguang Liu(刘旭光)2,3, Dianyin Hu(胡殿印)4,5
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
2 Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
3 College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
4 School of Energy and Power Engineering, Beihang University, Beijing 100191, China;
5 Beijing Key Laboratory of Aero-Engine Structure and Strength, Beijing 100191, China
Abstract  Using Fe, Co or Ni chains as electrodes, we designed several annulene-based molecular spintronic devices and investigated the quantum transport properties based on density functional theory and non-equilibrium Green's function method. Our results show that these devices have outstanding spin-filter capabilities and exhibit giant magnetoresistance effect, and that with Ni chains as electrodes, the device has the best transport properties. Furthermore, we investigated the spin-polarized optoelectronic properties of the device with Ni electrodes and found that the spin-polarized photocurrents can be directly generated by irradiating the device with infrared, visible or ultraviolet light. More importantly, if the magnetization directions of the two electrodes are antiparallel, the photocurrents with different spins are spatially separated, appearing at different electrodes. This phenomenon provides a new way to simultaneously generate two spin currents.
Keywords:  annulene molecular      molecular spintronic devices      quantum transport properties  
Received:  16 November 2016      Revised:  17 March 2017      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1510132, U1610255, 51401142, and 11604235), the Key Innovative Research Team in Science and Technology of Shanxi Province, China (Grant No. 201605D131045-10), the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2015021027 and 2016021030), the Scientific and Technological Innovation Program of the Higher Education Institutions of Shanxi Province, China (Grant No. 2016140), and the Program for the Outstanding Innovative Teams of the Higher Learning Institutions of Shanxi Province, China.
Corresponding Authors:  Zhi Yang     E-mail:  yangzhi@tyut.edu.cn

Cite this article: 

Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印) Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices 2017 Chin. Phys. B 26 067201

[1] Joachim C, Gimzewski J K and Aviram A 2000 Nature 408 541
[2] Flood A, Stoddart J and Steuerman S and Heath J 2004 Science 306 2055
[3] Aviram A and Ratner M A 1974 Chem. Phys. Lett. 29 277
[4] Reed M A 1999 Proc. IEEE 87 652
[5] Liu K, Wang X and Wang F 2008 ACS Nano 2 2315
[6] Javaid S, Bowen M, Boukari S, Joly L, Beaufrand J B, Chen X, Dappe Y J, Scheurer F, Kappler J P, Arabski J, Wulfhekel W, Alouani M and Beaurepaire E 2010 Phys. Rev. Lett. 105 077201
[7] Takács A F, Witt F, Schmaus S, Balashov T, Bowen M, Beaurepaire E and Wulfhekel W 2008 Phys. Rev. B 78 233404
[8] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615
[9] Wende H, Bernien M, Luo J, Sorg C, Ponpandian N, Kurde J, Miguel J, Piantek M, Xu X, Eckhold P, Kuch W, Baberschke K, Panchmatia P M, Sanyal B, Oppeneer P M and Eriksson O 2007 Nat. Mater. 6 516
[10] Mannini M, Pineider F, Sainctavit P, Danieli C, Otero E, Sciancalepore C, Talarico A M, Arrio M, Cornia A, Gatteschi D and Sessoli R 2009 Nat. Mater. 8 194
[11] Yang J F, Zhou L, Han Q and Wang X F 2012 J. Phys. Chem. C 116 19996
[12] Gajek M, Bibes M, Barthélémy A, Bouzehouane K, Fusil S, Varela M, Fontcuberta J and Fert A 2005 Phys. Rev. B 72 020406
[13] Müller M, Luysberg M and Schneider C M 2011 Appl. Phys. Lett. 98 142503
[14] Lee M, Williams J R, Zhang S, Frisbie C D and Gordon D G 2011 Phys. Rev. Lett. 107 256601
[15] Gütlich P and Goodwin H A 2004 Top. Curr. Chem. 233 1
[16] Antonangeli D, Siebert J, Aracne C M, Farber D L, Bosak A, Hoesch M, Krisch M, Ryerson F J, Fiquet G and Badro J 2011 Science 331 64
[17] Lupton J M, McCamey D R and Boehme C 2010 ChemPhysChem 11 304
[18] Wei J H, Liu X J, Xie S J and Yan Y 2009 J. Chem. Phys. 131 064906
[19] Chen B B, Jiang S W, Ding H F, Jiang Z S and Wu D 2014 Chin. Phys. B 23 018104
[20] Urdampilleta M, Klyatskaya S, Cleuziou J P, Ruben M and Wernsdorfer W 2011 Nat. Mater. 10 502
[21] Wu J C, Wang X F, Zhou L, Da H X, Lim K H, Yang S W and Li Z Y 2009 J. Phys. Chem. C 113 7913
[22] Petta J R, Slater S K and Ralph D C 2004 Phys. Rev. Lett. 93 136601
[23] Schmaus S, Bagrets A, Nahas Y, Yamada T K, Bork A, Bowen M, Beaurepaire E, Evers F and Wulfhekel W 2011 Nat. Nanotechnol. 6 185
[24] Matsuura Y 2015 Chem. Phys. Lett. 619 23
[25] Kong X, Cui B, Zhao W, Zhao J, Li D and Liu D 2014 Org. Electron. 15 3674
[26] Pati R, Senapati L, Ajayan P M and Nayak S K 2003 Phys. Rev. B 68 100407
[27] Chen T, Wang L, Li X, Luo K, Xu L, Li Q, Zhang X and Long 2014 RSC Adv. 4 60376
[28] Zhou Y H, Zeng J, Chen K Q 2014 Carbon 76 175
[29] Zheng J, Deng X, Zhao J, Guo P, Guo C, Ren Z and Bai J 2015 Comput. Mater. Sci. 99 203
[30] Li J, Li T, Zhou Y, Wu W, Zhang L and Li H 2016 Phys. Chem. Chem. Phys. 18 28217
[31] Li X, Li H L, Wan H and Zhou G 2015 Org. Electron. 19 26
[32] Bulo R E, Trion L, Ehlers A W, Kanter F J, Schakel M, Lutz M, Spek A L, Lammertsma K 2004 Chem. Eur. J. 10 5332
[33] Choi C H and Kertesz M 1998 J. Phys. Chem. A 102 3429
[34] Dorn H C, Yannoni C S, Limbach H H and Vogel E 1994 J. Phys. Chem. 98 11628
[35] Scott L T and Brunsvold W R 1978 J. Am. Chem. Soc. 100 4320
[36] Barrett D G, Liang G B, McQuade D T, Desper J M, Schladetzky K D and Gellman S H 1994 J. Am. Chem. Soc. 116 10525
[37] Yang X F, Liu Y S, Zhang X, Zhou L P, Wang X F, Chi F, Feng J F 2014 Phys. Chem. Chem. Phys. 16 11349
[38] Caliskan S and Laref A 2014 Sci. Rep. 4 7363
[39] Caliskan S 2013 Phys. Lett. A 377 1766
[40] Brandbyge M, Mozos J L, Ordejon P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Soler J M, Artacho E, Gale J D, Garcia A, Junquera J, Ordejon P and Portal D S 2002 J. Phys.: Condens. Matter. 14 2745
[43] Svizhenko A, Anantram M P and Govindan T R 2005 IEEE Trans. Nanotechnol. 4 557
[44] Datta S and Houten H V 1996 Phys. Today 49 70
[45] For NanoDcal software, see http://nanoacademic.ca
[46] Chen J, Hu Y and Guo H 2012 Phys. Rev. B 85 155441
[47] Deng X Q, Zhang Z H, Tang G P, Fan Z Q and Yang C H 2014 Phys. Lett. A 378 1540
[48] Zeng J and Chen K Q 2013 J. Mater. Chem. C 1 4014
[49] Zu F X, Liu Z L, Yao K L, Gao G Y, Fu H H, Zhu S C, Ni Y and Peng L 2014 Sci. Rep. 4 4838
[50] Zhao P, Wu Q H, Liu H Y, Liu D S and Chen G 2014 J. Mater. Chem. C 2 6648
[51] Wu Q H, Zhao P, Liu D S, Li S J and Chen G 2014 Org. Electron. 15 3615
[52] Jiang H, Kang D, Xie S and Saxena 2011 Org. Electron. 12 1264
[53] Yang Z, Ji Y L, Lan G, Xu L C, Liu X and Xu B 2015 Solid State Commun. 217 38
[54] Xie Y, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202
[1] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[2] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Group velocity matters for accurate prediction of phonon-limited carrier mobility
Qiao-Lin Yang(杨巧林), Hui-Xiong Deng(邓惠雄), Su-Huai Wei(魏苏淮), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2021, 30(8): 087201.
[5] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[6] Effect of weak disorder in multi-Weyl semimetals
Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平). Chin. Phys. B, 2020, 29(7): 077202.
[7] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[8] Temperature dependence on the electrical and physical performance of InAs/AlSb heterojunction and high electron mobility transistors
Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Yuming Zhang(张玉明). Chin. Phys. B, 2018, 27(9): 097201.
[9] An overview of thermoelectric films: Fabrication techniques, classification, and regulation methods
Jing-jing Feng(冯静静), Wei Zhu(祝薇), Yuan Deng(邓元). Chin. Phys. B, 2018, 27(4): 047210.
[10] Fundamental and progress of Bi2Te3-based thermoelectric materials
Min Hong(洪敏), Zhi-Gang Chen(陈志刚), Jin Zou(邹进). Chin. Phys. B, 2018, 27(4): 048403.
[11] Quench dynamics of ultracold atoms in one-dimensional optical lattices with artificial gauge fields
Xiaoming Cai(蔡小明). Chin. Phys. B, 2017, 26(8): 086701.
[12] Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field
Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2017, 26(7): 077201.
[13] Theoretical description of electron-phonon Fock space for gapless and gapped nanowires
Ashrafalsadat Shariati, Hassan Rabani, Mohammad Mardaani. Chin. Phys. B, 2017, 26(3): 036302.
[14] On the reverse leakage current of Schottky contacts on free-standing GaN at high reverse biases
Yong Lei(雷勇), Jing Su(苏静), Hong-Yan Wu(吴红艳), Cui-Hong Yang(杨翠红), Wei-Feng Rao(饶伟锋). Chin. Phys. B, 2017, 26(2): 027105.
[15] Spin transfer torque in the semiconductor/ferromagnetic structure in the presence of Rashba effect
Javad Vahedi, Sahar Ghasab Satoory. Chin. Phys. B, 2017, 26(2): 028503.
No Suggested Reading articles found!