Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 066101    DOI: 10.1088/1674-1056/26/6/066101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Serrated magnetic properties in metallic glass by thermal cycle

Myong-Chol Ri(李明哲)1,3, Sajad Sohrabi1,3, Da-Wei Ding(丁大伟)1, Bang-Shao Dong(董帮少)2, Shao-Xiong Zhou(周少雄)2, Wei-Hua Wang(汪卫华)1
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 China Iron & Steel Research Institute Group, Advanced Technology & Materials Co., Ltd., Beijing 100081, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Fe-based metallic glasses (MGs) with excellent soft magnetic properties are applicable in a wide range of electronic industry. We show that the cryogenic thermal cycle has a sensitive effect on soft magnetic properties of Fe78Si9B13 glassy ribbon. The values of magnetic induction (or magnetic flux density) B and coercivity Hc show fluctuation with increasing number of thermal cycles. This phenomenon is explained as thermal-cycle-induced stochastically structural aging or rejuvenation which randomly fluctuates magnetic anisotropy and, consequently, the magnetic induction and coercivity. Overall, increasing the number of thermal cycles improves the soft magnetic properties of the ribbon. The results could help understand the relationship between relaxation and magnetic property, and the thermal cycle could provide an effective approach to improving performances of metallic glasses in industry.

Keywords:  amorphous soft magnetic materials      rejuvenation      aging      cryogenic thermal cycling  
Received:  14 February 2017      Revised:  13 March 2017      Accepted manuscript online: 
PACS:  61.25.Mv (Liquid metals and alloys)  
  62.10.+s (Mechanical properties of liquids)  
  64.60.My (Metastable phases)  
  75.50.Mm (Magnetic liquids)  
Fund: 

Project supported by the National Key Research and Development Plan, China (Grant No. 2016YFB0300501), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-JSC017), the National Natural Science Foundation of China (Grant Nos. 51571209, 51461165101, and 51301194), and the National Basic Research Program of China (Grant No. 2015CB856800).

Corresponding Authors:  Da-Wei Ding, Wei-Hua Wang     E-mail:  dingdawei@iphy.ac.cn;whw@iphy.ac.cn

Cite this article: 

Myong-Chol Ri(李明哲), Sajad Sohrabi, Da-Wei Ding(丁大伟), Bang-Shao Dong(董帮少), Shao-Xiong Zhou(周少雄), Wei-Hua Wang(汪卫华) Serrated magnetic properties in metallic glass by thermal cycle 2017 Chin. Phys. B 26 066101

[1] Davies H A and Gibbs M R J 2007 Handbook of magnetism and advanced magnetic materials, Vol. 4. (Hoboken: John Wiley & Sons) pp. 1859-2568
[2] Herzer G 2013 Acta Mater. 61 718
[3] DeCristofaro N 1998 Ma.t Res. Soc. MRS Bull. 23 50
[4] Inagaki K, Kuwabara M, Sato K, Fukui K, Nakajima S and Azuma D 2011 Hitachi Rev. 60 250
[5] IŞIk F and UyaroĞLu Y 2014 Turk. J. Elec. Eng. & Commun. Sci. 23 1523
[6] Zaichenko S G, Perov N S, Glezer A M, Gan'shina E A, Kachalov V M, Calvo-Dalborg M and Dalborg U 2000 J. Magn. Magn. Mater. 215-216 297
[7] Ban K and Lovas A 2004 Cze J. Phys. 54 D141
[8] Wang W H, Pan M X, Zhao D Q, Hu Y and Bai H Y 2004 J. Phys.: Condens. Matter 16 3719
[9] Bán K, Kováč J and Novák L 2009 J. Phys.: Conference Series 144 1
[10] Dean S W, Zaichenko S G, Perov N S and Glezer A M 2010 J. ASTM Inter. 7 1
[11] Escobar M A, Yavari A R, Barrue R and Perron J C 1992 IEEE Trans. Mag. 28 1911
[12] Ketov S V, Sun Y H, Nachum S, Lu Z, Checchi A, Beraldin A R, Bai H Y, Wang W H, Louzguine-Luzgin D V, Carpenter M A and Greer A L 2015 Nature 524 7564 200
[13] Buschow K H J and de Boer F R 2003 Physics of Magnetism and Magnetic Materials (New York: Kluwer Academic/Plenum Publishers) p. 175
[14] Qin H and Zhu Z H 2015 Rare Metal Mater. Eng. 446 1340
[15] Luborsky F E and Becker J J 1979 IEEE Tran. Mag. Mag-15 3 1146
[16] Yavari A R, Barrue R, Harmelin M and Perron J C 1987 JMMM 69 43
[17] Zhang J, Fujimori H, Inoue A and Masumoto T 1988 Mater. Sci. Eng. 99 35
[18] Blázquez J S, Páerez S L and Conde A 2000 Mater. Lett. 45 246
[19] Komatsu T, Matusita K and Yokota R 1985 J. Non-Cry. Solid 69 347
[20] Nagel C, Ratzke K, Schmidtke E, Faupel F and Ulfert W 1999 Phys. Rev. B 60 9212
[21] Imran M M A, Bhandari D and Saxenav N S 2001 Physica B 293 394
[22] Slipenyuk A and Eckert J 2004 Scripta Mater. 50 39
[23] Miyazaki N, Wakeda M, Wang Y J and Ogata S 2016 npjCommun. Mater. 2 16013
[24] Wakeda M, Saida J, Li J and Ogata S 2015 Sci. Rep. 5 10545
[25] Sun Y H, Concustell A and Greer A L 2016 Nat. Rev. Mater. 1 16039
[26] Alben R, Becker J J and Chi M C 1978 J. Appl. Phys. 493 1653
[27] McHenry M E and Laughlin D E 2014 Physical Metallurgy (Elsevier) pp. 1881-2008
[28] Herzer G 1997 Handbook of Magnetic Materials, Vol. 10 (Elsevier Science B.V.) pp. 415-462
[29] McHenry M E, Willard M A and Laughlin D E 1999 Prog. Mater. Sci. 44 291
[30] Herzer G 2005 JMMM 294 99
[31] Wang A D, Men H, Shen B L, Xie G Q, Makino A and Inoue A 2011 Thin Solid Films 519 8283
[32] Zhukov A P and Shtangeev B L 1993 J. Appl. Phys. 73 10 5716
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[4] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[5] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[6] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[7] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[8] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[9] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[10] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[11] Large aperture phase-coded diffractive lens for achromatic and 16° field-of-view imaging with high efficiency
Gu Ma(马顾), Peng-Lei Zheng(郑鹏磊), Zheng-Wen Hu(胡正文), Suo-Dong Ma(马锁冬), Feng Xu(许峰), Dong-Lin Pu(浦东林), and Qin-Hua Wang(王钦华). Chin. Phys. B, 2022, 31(7): 074210.
[12] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[13] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[14] Deep learning facilitated whole live cell fast super-resolution imaging
Yun-Qing Tang(唐云青), Cai-Wei Zhou(周才微), Hui-Wen Hao(蒿慧文), and Yu-Jie Sun(孙育杰). Chin. Phys. B, 2022, 31(4): 048705.
[15] Non-invasive and low-artifact in vivo brain imaging by using a scanning acoustic-photoacoustic dual mode microscopy
Wentian Chen(陈文天), Chao Tao(陶超), Zizhong Hu(胡仔仲), Songtao Yuan(袁松涛), Qinghuai Liu(刘庆淮), and Xiaojun Liu(刘晓峻). Chin. Phys. B, 2022, 31(4): 044304.
No Suggested Reading articles found!