Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(5): 057303    DOI: 10.1088/1674-1056/26/5/057303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage

Bin Xu(徐斌)1, Rao Li(李饶)2, Hua-Hua Fu(傅华华)3
1 Department of Mathematics and Information Sciences, North China university of Water Resources and Electric Power, Zhengzhou 450011, China;
2 Henan Mechanical and Electrical Vocational College, Zhengzhou 451191, China;
3 School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We investigate electron transport through HgTe ribbons embedded by strip-shape gate voltage through using a non-equilibrium Green function technique. The numerical calculations show that as the gate voltage is increased, an edge-related state in the valence band structure of the system shifts upwards, then hangs inside the band gap and merges into the conduction band finally. It is interesting that as the gate voltage is increased continuously, another edge-related state in the valence band also shifts upwards in the small-k region and contacts the previous one to form a Dirac cone in the band structure. Meanwhile in this process, the conductance spectrum displays as multiple resonance peaks characterized by some strong antiresonance valleys in the band gap, then behaves as Fabry-Pérot oscillations and finally develops into a nearly perfect quantum plateau with a value of 2e2/h. These results give a physical picture to understand the formation process of the Dirac state driven by the gate voltage and provide a route to achieving particular quantum oscillations of the electronic transport in nanodevices.
Keywords:  Fabry-Pérot oscillations      Diarc cone      electronic transport      HgTe quantum well  
Received:  05 December 2016      Revised:  05 February 2017      Accepted manuscript online: 
PACS:  73.63.Hs (Quantum wells)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1404108, 11104072, and 10947162) and Henan Foundation and Frontier Technology Research Program of China (Grant No. 162300410056).
Corresponding Authors:  Bin Xu     E-mail:  hnsqxb@163.com

Cite this article: 

Bin Xu(徐斌), Rao Li(李饶), Hua-Hua Fu(傅华华) Generation of Fabry-Pérot oscillations and Dirac state in two-dimensional topological insulators by gate voltage 2017 Chin. Phys. B 26 057303

[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[2] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[3] Wu C J, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
[4] Bernevig B A, Hughes T H and Zhang S C 2006 Science 314 1757
[5] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[6] Chang C, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L, Ji Z, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Ma X and Xue Q K 2013 Science 340 167
[7] Chen J, Wang J and Sun Q F 2012 Phys. Rev. B 85 125401
[8] Song J, Liu H, Jiang H, Sun Q F and Xie X C 2012 Phys. Rev. B 86 085437
[9] Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316
[10] Fu H H, Gao J H and Yao K L 2014 Nanotechnology 25 225201
[11] Li J, Chu R L Jain J K and Shen S Q 2009 Phys. Rev. Lett. 102 136806
[12] Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2008 Phys. Rev. Lett. 101 146802
[13] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[14] Chen J C, Wang J and Sun Q F 2012 Phys. Rev. B 85 125401
[15] Xing Y, Sun Q F and Wang J 2006 Phys. Rev. B 73 205339
[16] Fu H H, Yao K L and Liu Z L 2008 J. Chem. Phys. 129 134706
[17] Fu H H, Yao K L and Liu Z L 2008 J. Phys. Chem. A 112 6205
[18] Fu H H and Yao K L 2013 Europhys. Lett. 103 57011
[19] Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997
[20] Maciejko J, Liu C, Oreg Y, Qi X L, Wu C and Zhang S C 2009 Phys. Rev. Lett. 102 256803
[21] Varlet A, Liu M H, Krueckl V, Bischoff D, Simonet P, Watanabe K, Taniguchi T, Richter K, Ensslin K and Ihn T 2014 Phys. Rev. Lett. 113 116601
[1] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[2] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[5] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[6] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[7] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[8] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[9] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[10] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[11] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[12] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
[13] Electronic transport properties of lead nanowires
Lishu Zhang(张力舒), Yi Zhou(周毅), Xinyue Dai(代新月), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(7): 073102.
[14] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[15] Photon-assisted and spin-dependent shot noise in magnetic-field tunable ZnSe/Zn1-xMnxSe structures
Chun-Lei Li(李春雷), Yong Guo(郭永), Xiao-Ming Wang(王小明), Yuan Lv(律原). Chin. Phys. B, 2017, 26(2): 027301.
No Suggested Reading articles found!