Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047702    DOI: 10.1088/1674-1056/26/4/047702
Special Issue: TOPICAL REVIEW — ZnO-related materials and devices
TOPICAL REVIEW—ZnO-related materials and devices Prev   Next  

Recent progress of the native defects and p-type doping of zinc oxide

Kun Tang(汤琨), Shu-Lin Gu(顾书林), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓)
School of Electronic Science & Engineering, Nanjing University, Nanjing 210023, China
Abstract  

Zinc oxide (ZnO) is a compound semiconductor with a direct band gap and high exciton binding energy. The unique property, i.e., high efficient light emission at ultraviolet band, makes ZnO potentially applied to the short-wavelength light emitting devices. However, efficient p-type doping is extremely hard for ZnO. Due to the wide band gap and low valence band energy, the self-compensation from donors and high ionization energy of acceptors are the two main problems hindering the enhancement of free hole concentration. Native defects in ZnO can be divided into donor-like and acceptor-like ones. The self-compensation has been found mainly to originate from zinc interstitial and oxygen vacancy related donors. While the acceptor-like defect, zinc vacancy, is thought to be linked to complex shallow acceptors in group-VA doped ZnO. Therefore, the understanding of the behaviors of the native defects is critical to the realization of high-efficient p-type conduction. Meanwhile, some novel ideas have been extensively proposed, like double-acceptor co-doping, acceptor doping in iso-valent element alloyed ZnO, etc., and have opened new directions for p-type doping. Some of the approaches have been positively judged. In this article, we thus review the recent (2011-now) research progress of the native defects and p-type doping approaches globally. We hope to provide a comprehensive overview and describe a complete picture of the research status of the p-type doping in ZnO for the reference of the researchers in a similar area.

Keywords:  zinc oxide      native defects      p-type doping      acceptor  
Received:  09 July 2016      Revised:  23 August 2016      Accepted manuscript online: 
PACS:  77.55.hf (ZnO)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  73.61.-r (Electrical properties of specific thin films)  
  74.72.Gh (Hole-doped)  
Fund: 

Project supported by the State Key Program for Basic Research of China (Grant No. 2011CB302003), the National Natural Science Foundation of China (Grant Nos. 61274058, 61322403, 61504057, and 61574075), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20130013 and BK20150585), and the Six Talent Peaks Project in Jiangsu Province, China (Grant No. 2014XXRJ001).

Corresponding Authors:  Shu-Lin Gu     E-mail:  slgu@nju.edu.cn

Cite this article: 

Kun Tang(汤琨), Shu-Lin Gu(顾书林), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓) Recent progress of the native defects and p-type doping of zinc oxide 2017 Chin. Phys. B 26 047702

[1] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[2] Zu P, Tang Z K, Wong G K L, Kawasaki M, Ohtomo A, Koinuma H and Segawa Y 1997 Solid State Commun. 103 459
[3] Reynolds J G and Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058
[4] Van de Walle C G and Neugebauer J 2003 Lett. Nat. 423 626
[5] McCluskey M D and Jokela S J 2009 J. Appl. Phys. 106 071101
[6] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[7] Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Lett. 97 013501
[8] Shan C X, Liu J S, Lu Y J, Li B H, Ling F C C and Shen D Z 2015 Opt. Lett. 40 3041
[9] Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J and Liu J L 2011 Nat. Nanotechnol. 6 506
[10] Petretto G and Bruneval F 2014 Phys. Rev. Appl. 1 024005
[11] Bang J, Sun Y Y, West D, Meyer B K and Zhang S B 2015 J. Mater. Chem. C 3 339
[12] Ton-That C, Zhu L, Lockrey M N, Phillips M R, Cowie B C C, Tadich A, Thomsen L, Khachadorian S, Schlichting S, Jankowski N and Hoffmann A 2015 Phys. Rev. B 92 024103
[13] Liu L, Xu J, Wang D, Jiang M, Wang S, Li B, Zhang Z, Zhao D, Shan C, Yao B and Shen D 2012 Phys. Rev. Lett. 108 215501
[14] Amini M N, Saniz R, Lamoen D and Partoens B 2015 Phys. Chem. Chem. Phys. 17 5485
[15] Puchala B and Morgan D 2012 Phys. Rev. B 85 195207
[16] Tuomisto F, Rauch C, Wagner M R, Hoffmann A, Eisemann S, Meyer B K, Kilanski L, Tarun M C and McCluskey M D 2013 J. Mater. Res. 28 1977
[17] Bang J, Kim Y S, Park C H, Gao F and Zhang S B 2014 Appl. Phys. Lett. 104 252101
[18] Look D C, Farlow G C, Reunchan P, Limpijumnong S, Zhang S B and Nordlund K 2005 Phys. Rev. Lett. 95 225502
[19] Kim Y S and Park C H 2009 Phys. Rev. Lett. 102 086403
[20] Gluba M A, Nickel N H and Karpensky N 2013 Phys. Rev. B 88 245201
[21] Lavrov E V 2009 Physica B 404 5075
[22] Akasaka S, Nakahara K, Tsukazaki A, Ohtomo A and Kawasaki M 2010 Appl. Phys. Express 3 071101
[23] Persson C 2006 Phys. Rev. Lett. 97 146403
[24] Tang X, Deng Y, Wagner D, Yu L and Lv H 2012 Solid State Commun. 52 1
[25] Tang K, Gu S L, Wu K P, Zhu S M, Ye J D, Zhang R and Zheng Y D 2010 Appl. Phys. Lett. 96 242101
[26] McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Grant Norton M, Harrison K W and Ha S 2015 J. Appl. Phys. 117 112802
[27] Janotti A and Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
[28] Oba F, Choi M, Togo A and Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302
[29] Oba F, Choi M, Togo A Seko A and Tanaka I 2010 J. Phys.: Condens. Matter 22 384211
[30] Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206
[31] Liu L, Mei Z, Tang A, Azarov A, Kuznetsov A, Xue Q and Du X 2016 Phys. Rev. B 93 235305.
[32] Kappers I A, Gilliam O R, Evans S M, Halliburton L E and Giles N C 2008 Nucl. Instrum. Methods Phys. Res. B 266 2953
[33] Sancier K M 1970 Surface Sci. 21 1
[34] Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983
[35] Heo Y W, Norton D P and Pearton S J 2005 J. Appl. Phys. 98 073502
[36] Vlasenko L S and Watkins G D 2005 Phys. Rev. B 71 125210
[37] Evans S M, Giles N C, Halliburton L E and Kappers L A 2008 J. Appl. Phys. 103 043710
[38] Kaftelen H, Ocakoglu K, Thomann R, Tu S Y, Weber S and Erdem E 2012 Phys. Rev. B 86 014113
[39] Janotti A and Van de Walle C G 2007 Phys. Rev. B 76 165202
[40] Kohan A F, Ceder G, Morgan D and Van de Walle C G 2000 Phys. Rev. B 61 15019
[41] Teklemichael S T, Hlaing Oo W M, McCluskey M D, Walter E D and Hoyt D W 2011 Appl. Phys. Lett. 98 232112
[42] Khan E H, Weber M H and McCluskey M D 2013 Phys. Rev. Lett. 111 017401
[43] Wang Z, Su S C, Younas M, Ling F C C, Anwand W and Wagner A 2015 RSC Adv. 5 12530
[44] Schirra M, Schneider R, Reiser A, Prinz G M, Feneberg M, Biskupek J, Kaiser U, Krill C E, Thonke K and Sauer R 2008 Phys. Rev. B 77 125215
[45] Thonke K, Schirra M, Schneider R, Reiser A, Prinz G M, Feneberg M, Sauer R, Biskupek J, Kaiser U 2010 Phys. Stat. Sol. B 247 1464
[46] Taylor A L, Filipovich G and Lindeberg GK 1970 Solid State Commun. 8 1359
[47] Takenaka H and Singh D J 2007 Phys. Rev. B 75 241102
[48] Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G and Kuznetsove A Y 2012 Phys. Rev. B 86 121203
[49] Dong Y F, Tuomisto F, Svensson B G, Kuznetsove A Y and Brillson L J 2010 Phys. Rev. B 81 081201
[50] Janotti A and Van de Walle C G 2006 J. Cryst. Growth 287 58
[51] Thomas D G 1957 J. Phys. Chem. Solids 3 229
[52] Erhart P and Albe K 2006 Appl. Phys. Lett. 88 201918
[53] Zeng H B, Duan G T, Li Y, Yang S K, Xu X X and Cai W P 2010 Adv. Funct. Mater. 20 561
[54] Chen H, Gu S L, Tang K, Zhu S M, Zhu Z B, Ye J D, Zhang R and Zheng Y D 2011 J. Lumin. 131 1189
[55] Yao Z R, Gu S L, Tang K, Ye J D, Zhang Y, Zhu S M and Zheng Y D 2015 J. Lumin. 161 293
[56] Lautenschlaeger S, Eisermann S, Haas G, Zolnowski E A, Hofmann M N, Laufer A, Pinnisch A, Meyer B K, Wagner M R, Reparaz J S, Callsen G, Hoffmann A, Chernikov A, Chatterjee S, Bornwasser V and Koch M 2012 Phys. Rev. B 85 235204
[57] Wagner M R, Callsen G, Reparaz J S, Schulze J H, Kirste R, Cobet M, Ostapenko I A, Rodt S, Nenstiel C, Kaiser M, Hoffmann A, Rodina A V, Phillips M R, Lautenschlager S, Eisermann S and Meyer B K 2011 Phys. Rev. B 84 035313
[58] Li W J, Fang L, Qin G, Ruan H, Zhang H, Kong C, Ye L, Zhang P and Wu F 2015 J. Appl. Phys. 117 145301
[59] Tang K, Gu R, Gu S L, Ye J D, Zhu S M, Yao Z R, Xu Z H and Zheng Y D 2015 J. Appl. Phys. 117 135304
[60] Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G and Harsch W C 1998 Solid State Commun. 105 399
[61] Seager C H and Myers S M 2003 J. Appl. Phys. 94 2888
[62] Grossner U, Gabrielsen S, Borseth T M, Grillenberger J, Kuznetsove A Y and Svensson B G 2004 Appl. Phys. Lett. 85 2259
[63] Tuomisto F, Saarinen K, Look D C and Farlow G C 2005 Phys. Rev. B 72 085206
[64] Kobayashi A, Sankey O F and Dow J D 1983 Phys. Rev. B 28 946
[65] Park C H, Zhang S B and Wei S H 2002 Phys. Rev. B 66 073202
[66] Lee E C, Kim Y S, Jin Y G and Chang K J 2001 Phys. Rev. B 64 085120
[67] Limpijumnong S, Zhang S B, Wei S H and Park C H 2004 Phys. Rev. Lett. 92 155504
[68] Lyons J L, Janotti A and Van de Walle C G 2009 Appl. Phys. Lett. 95 252105
[69] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[70] Tarun M C, Zafar Iqbal M and McCluskey M D 2011 AIP Advances 1 022105
[71] Lambrecht W R L and Boonchun A 2013 Phys. Rev. B 87 195207
[72] Cui Y and Bruneval F 2010 Appl. Phys. Lett. 97 042108
[73] Zhang H, Kong C, Li W, Qin G, Ruan H and Tan M 2016 J. Mater. Sci. 27 5251
[74] Vidya R, Ravindran P and Fjellvag H 2012 J. Appl. Phys. 111 123713
[75] Wardle M G, Goss J P and Briddon P R 2005 Phys. Rev. B 71 155205
[76] Bjorheim T S, Erdal S, Johansen K M, Knutsen K E and Norby T 2012 J. Phys. Chem. C 116 23764
[77] Duan X M, Stampfl C, Bilek M M M, McKenzie D R and Wei S H 2011 Phys. Rev. B 83 085202
[78] Huda M N, Yan Y and Al-Jassim M M 2012 J. Phys.: Condens. Matter 24 415503
[79] Hu H and Chen L 2014 Appl. Phys. 4 46
[80] Li J B, Wei S H, Li S S and Xia J B 2006 Phys. Rev. B 74 081201
[81] Gai Y, Tang G and Li J 2011 J. Phys. Chem. Solids 72 725
[82] Wu J, Hu J, Shao L, Xu J, Song K and Zheng P 2015 Mater. Sci. Semicond. Process. 29 245
[83] Myers M A, Lee J H and Wang H 2013 Mater. Lett. 100 78
[84] Tay C B, Chua S J and Loh K P 2010 J. Phys. Chem. C 114 9981
[85] Tay C B, Tang J, Nguyen X S, Huang X H, Chai J W, Venkatesan V T and Chua S J 2012 J. Phys. Chem. C 116 24239
[86] Lee J S, Cha S N, Kim J M, Nam H W, Lee S H, Ko W B, Wang K L Park J G and Hong J P 2011 Adv. Mater. 23 4183
[87] Saaedi A, Yousefi R, Jamali-Sheini F, Cheraghizade M, Khorsand Zak A and Huang N M 2013 Superlattices and Microstruct. 61 91
[88] Awan S U, Hasanain S K, Anjun D H, Awan M S and Shah S A 2014 J. Appl. Phys. 116 164109
[89] Ko W, Lee S, Myoung N and Hong J 2016 J. Mater. Chem. C 4 142
[90] Bagheri N, Majles Ara M H and Ghazyani N 2016 J. Mater. Sci. 27 1293
[91] Lai J J, Lin Y J, Chen Y H, Chang H C, Liu C J, Zou Y Y, Shih Y T and Wang M C 2011 J. Appl. Phys. 110 013704
[92] He H P, Lin S S, Yuan G D, Zhang L Q, Zhang W F, Luo L B, Cao Y L, Ye Z Z and Lee S T 2011 J. Phys. Chem. C 115 19018
[93] Lin S S 2012 Appl. Phys. Lett. 101 122109
[94] Liu H B, Pan X H, Huang J Y, He H P and Ye Z Z 2013 Thin Solid Films 540 53
[95] Zhang H H, Pan X H, Li Y, Ye Z Z, Lu B, Chen W, Huang J Y, Ding P, Chen S S, He H P, Lu J G, Chen L X and Ye C L 2014 Appl. Phys. Lett. 104 112106
[96] Li Y, Pan X H, Jiang J, He H P, Huang J Y, Ye C L and Ye Z Z 2014 J. Alloys Compd. 584 466
[97] Pan X H, Zhou Y S, Chen S S, Ding P, Lu B, Huang J Y and Ye Z Z 2014 J. Cryst. Growth 404 54
[98] Wang Z, Liu H, He H, Huang J, Chen L X and Ye Z Z 2015 Appl. Phys. A 118 1229
[99] Chen S S, Pan X H, He H P, Chen W, Chen C, Dai W, Zhang H H, Ding P, Huang J Y, Lu B and Ye Z Z 2015 Opt. Lett. 40 649
[100] Yue L, Zhang Z, Ma Y and Zhang W 2016 J. Nanomater. 2016 3040536
[101] Chen Y J, Jen H W, Wong M S, Ho C H, Liang J H, Liu J T and Pang J H 2013 J. Cryst. Growth 362 193
[102] Ma Y, Gao Q, Wu G G, Li W C, Gao F B, Yin J Z, Zhang B L and Du G T 2013 Mater. Res. Bull. 48 1239
[103] Liang J H, Chen Y J and Wang Y C 2013 Surf. Coat. Technol. 231 243
[104] Li L, Shan C X, Li B H, Zhang J Y, Yao B, Shen D Z, Fan X W and Lu Y M 2010 J. Mater. Sci. 45 4093
[105] Ding M, Zhao D X, Yao B, Liu B H, Zhang Z Z and Shen D Z 2011 Appl. Phys. Lett. 98 062102
[106] Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A, Hammarstrom L, Odobel F and Jobic S 2012 J. Am. Chem. Soc. 134 464
[107] Chao L C, Chen J W, Peng H C and Ho C H 2013 Surf. Coat. Technol. 231 492
[108] Herring N P, Panchakarla L S and El-Shall M S 2014 Langmuir 30 2230
[109] Snigurenko D, Kopalko K, Krajewski T A, Jakiela R and Guziewicz E 2015 Semicond. Sci. Technol. 30 015001
[110] Pathak T K, Kumar V, Swart H C and Purohit L P 2016 Physica B 480 31
[111] Jin Y, Zhang B, Wang J and Shi L 2016 Chin. Phys. Lett. 33 058101
[112] Hsu Y, Lan W, Huang K, Lin J and Chang K 2016 Physica B 481 63
[113] Hiragino Y, Tanaka T, Takeuchi H, Takeuchi A, Lin J, Yoshida T and Fujita Y 2016 Solid State Electron. 118 41
[114] Yankovich A B, Puchala B, Wang F, Seo J H, Morgan D, Wang X D, Ma Z Q, Kvit A V and Voyles P M 2012 Nano Lett. 12 1311
[115] Kang J W, Choi Y S, Choe M Y, Kim N Y, Lee T H, Kim B J, Tu C W and Park S J 2012 Nanotechnol. 23 495712
[116] Pandey S K, Pandey S K, Awasthi V, Gupta M, Deshpande U P and Mukherjee S 2013 Appl. Phys. Lett. 103 072109
[117] Pandey S K, Pandey S K, Awasthi V, Kumar A, Deshpande U P, Gupta M and Mukherjee S 2013 J. Appl. Phys. 114 163107
[118] Feng Q J, Liu S, Liu Y, Zhao H F, Lu J Y, Tang K, Li R, Xu K and Guo H Y 2015 Mater. Sci. Semicond. Process. 29 188
[119] Pradel K C, Ding Y, Wu W, Bando Y, Fukata N and Wang Z L 2016 ACS Appl. Mater. Interfaces 8 4287
[120] Bashar S B, Suja M, Morshed M, Gao F and Liu J L 2016 Nanotechnol. 47 065204
[121] Baek S, Biswas P, Kim J, Kim Y, Lee T and Myoung J 2016 ACS Appl. Mater. Interfaces 8 13018
[122] Singh B K and Tripathi S 2016 J. Mater. Sci. 27 2360
[123] Yang X P, Lu J G, Zhang H H, Lu B, Huang J Y, Ye C L and Ye Z Z 2012 J. Appl. Phys. 112 113510
[124] Hoffmann P and Pettenkofer C 2011 Phys. Status Solidi B 248 327
[125] Gao J, Zhang X, Sun Y, Zhao Q and Yu D 2010 Nanotechnol. 21 245703
[126] Tian S, Zeng D, Xie C and Zhao X 2014 Mater. Lett. 116 363
[127] Liu H Y, Izyumskaya N, Avrutin V, Ozgur U, Yankovich A B, Kvit A V, Voyles P M and Morkoc H 2012 J. Appl. Phys. 112 033706
[128] Huang J, Chu S, Kong J Y, Zhang L, Schwarz C M, Wang G P, Chernyak L, Chen Z H and Liu J L 2013 Adv. Opt. Mater. 1 179
[129] Chen X, Zhang Z, Yao B, Zhang Y, Gu Y, Zhao P, Li B and Shen D 2016 J. Alloys Compd. 672 260
[130] Sahu R, Gholap H B, Mounika G, Dileep K, Vishal B, Ghara S and Datta R 2016 Phys. Status Solidi B 253 504
[131] Xia Q X, Hui K S, Hui K N, Hwang D H, Singh J, Cho Y R, Lee S K, Zhou W, Wan Z P, Ha Thuc C N and Son Y G 2012 Mater. Lett. 78 180
[132] Pathak T K, Kumar V, Swart H C and Purohit L P 2016 Physica E 77 1
[133] Pathak T K, Kumar V and Purohit L P 2016 Optik 127 603
[134] Wang Z W, Zang H and Ren L Y 2015 Appl. Phys. A 118 465
[135] Noh W, Lee J, Lee J, Heo Y and Kim J 2016 Ceram. Int. 42 4136
[136] Balakrishnan, Gowrishankar S, Premchander P and Gopalakrishnan N 2012 J. Alloys Compd. 512 235
[137] Mohanta S K, Nakamura A and Temmyo J 2013 J. Cryst. Growth 375 1
[138] Li W J, Kong C Y, Ruan H B, Qing G P, Fang L, Meng X D, Zhang H, Zhang P and Xu Q 2014 J. Phys. Chem. C 118 22799
[139] Huang C Y, Lee Y J, Lin T Y, Chang S L, Lian J T, Lin H M, Chen N C and Yang Y J 2014 Opt. Lett. 39 805
[140] Senthil Kumar E, Chatterjee J, Rama N, Das Gupta N and Ramachandra Rao M S 2011 ACS Appl. Mater. Inferfaces 3 1974
[141] Duan L, Zhang W X, Yu X C, Wang P, Jiang Z Q, Luan L J, Chen Y N and Li D L 2013 Solid State Commun. 157 45
[142] Li W J, Kong C Y, Qin G P, Ruan H B and Fang L 2014 J. Alloys Compd. 609 173
[143] Zhang B Y, Yao B, Li Y F, Zhang Z Z, Li B H, Shan C X, Zhao D X and Shen D Z 2010 Appl. Phys. Lett. 97 222101
[144] Xie J S and Chen Q 2014 Chin. Phys. B 23 097703
[145] Yang J J, Fang Q Q, Wang W N, Wang D D and Wang C 2014 J. Appl. Phys. 115 124509
[146] Plugaru R and Plugaru N 2016 J. Phys.: Condens. Matter 28 224008
[147] Sui Y R, Yao B, Xiao L, Xing G Z, Yang L L, Li X F, Li X Y, Lang J H, Lv S Q, Cao J, Gao M and Yang J H 2013 J. Appl. Phys. 113 133101
[148] Amiruddin R, Devasia S, Mohammedali D K and Santosh Kumar M C 2015 Semicond. Sci. Technol. 30 035009
[149] Cao L, Zhu L P, Jiang J, Li Y, Zhang Y Z and Ye Z Z 2012 J. Alloys Compd. 516 157
[150] Cao L, Zhu L P and Ye Z Z 2013 J. Phys. Chem. Solids 74 668
[151] Sun L J, Hu J, He H Y, Wu X P, Xu X Q, Lin B X, Fu Z X and Pan B C 2009 Solid State Commun. 149 1663
[152] Xu T N, Li X, Lu Z Chen Y Y, Sui C H and Wu H Z 2014 Appl. Surf. Sci. 316 62
[153] Long S, Li Y, Yao B, Ding Z, Xu Y, Yang G, Deng R, Xiao Z, Zhao D, Zhang Z, Zhang L and Zhao H 2016 Thin Solid Films 600 13
[154] Pan H L, Yao B, Yang T, Xu Y, Zhang B Y, Liu W W and Shen D Z 2010 Appl. Phys. Lett. 97 142101
[155] Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z and Tang Z K 2012 J. Phys. D: Appl. Phys. 45 455101
[156] Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C and Tang Z K 2014 J. Alloys Compd. 616 505
[157] Chen M M, Zhu Y, Ji X, Chen A Q, Su L X, Shen Z, Yang C L, Xiang R, Gui X C, Huang F and Tang Z K 2015 J. Alloys Compd. 622 719
[158] Su Y Q, Chen M M, Su L X, Zhu Y and Tang Z K 2016 Chin. Phys. B 25 066106
[159] Chen A, Zhu H, Wu Y, Chen M, Zhu Y, Gui X and Tang Z 2016 Adv. Funct. Mater. 26 3696
[160] Kobayashi K, Koyama T, Zhang X Y, Kohono Y, Tomita Y, Maeda Y and Matsushima S 2013 J. Phys. Chem. Solids 74 80
[161] Cai H, Xu H B, Ye Z Z and Huang J Y 2013 Mater. Lett. 108 183
[162] Park S, Minegishi T, Oh D, Lee H, Taishi T, Park J, Jung M, Chang J, Im I, Ha J, Hong S, Yonenaga I, Chikyow T and Yao T 2010 Appl. Phys. Express 3 031103
[163] Tang K, Gu S L, Ye J D, Zhu S M, Huang S M, Gu R, Zhang R, Shi Y and Zheng Y D 2012 J. Vac. Sci. Technol. A 30 051508
[164] Park S H, Minegishi T, Oh D C, Chang J H, Yao T, Taishi T and Yonenaga I 2013 J. Cryst. Growth 363 190
[165] Kang J W, Choi Y S, Kim B H, Kim N Y, Tu C W and Park S J 2014 Scripta Mater. 84-85 39
[166] Yamamoto T and Katayam-Yoshida H 2000 J Cryst. Growth 214-215 552
[167] Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G and Shen D Z 2012 Appl. Phys. Lett. 101 011106
[168] Look D C 2005 Semicond. Sci. Technol. 20 S55
[1] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[2] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[3] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[4] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[5] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[6] High-throughput fabrication and semi-automated characterization of oxide thin film transistors
Yanbing Han(韩炎兵), Sage Bauers, Qun Zhang(张群), Andriy Zakutayev. Chin. Phys. B, 2020, 29(1): 018502.
[7] Zinc-oxide nanoparticle-based saturable absorber deposited by simple evaporation technique for Q-switched fiber laser
Syarifah Aloyah Syed Husin, Farah Diana Muhammad, Che Azurahanim Che Abdullah, Siti Huzaimah Ribut, Mohd Zamani Zulkifli, Mohd Adzir Mahdi. Chin. Phys. B, 2019, 28(8): 084207.
[8] Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors
Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞). Chin. Phys. B, 2018, 27(6): 068504.
[9] Review of flexible and transparent thin-film transistors based on zinc oxide and related materials
Yong-Hui Zhang(张永晖), Zeng-Xia Mei(梅增霞), Hui-Li Liang(梁会力), Xiao-Long Du(杜小龙). Chin. Phys. B, 2017, 26(4): 047307.
[10] Positive gate bias stress-induced hump-effect in elevated-metal metal-oxide thin film transistors
Dong-Yu Qi(齐栋宇), Dong-Li Zhang(张冬利), Ming-Xiang Wang(王明湘). Chin. Phys. B, 2017, 26(12): 128101.
[11] N-type GaSb single crystals with high below-band gap transmission
Yong-Biao Bai(白永彪), You-Wen Zhao(赵有文), Gui-Ying Shen(沈桂英), Xiao-Yu Chen(陈晓玉), Jing-Ming Liu(刘京明), Hui Xie(谢晖), Zhi-Yuan Dong(董志远), Jun Yang(杨俊), Feng-Yun Yang(杨凤云), Feng-Hua Wang(王凤华). Chin. Phys. B, 2017, 26(10): 107801.
[12] Improvement in the electrical performance and bias-stress stability of dual-active-layered silicon zinc oxide/zinc oxide thin-film transistor
Yu-Rong Liu(刘玉荣), Gao-Wei Zhao(赵高位), Pai-To Lai(黎沛涛), Ruo-He Yao(姚若河). Chin. Phys. B, 2016, 25(8): 088503.
[13] Influence of white light illumination on the performance of a-IGZO thin film transistor under positive gate-bias stress
Tang Lan-Feng (汤兰凤), Yu Guang (于广), Lu Hai (陆海), Wu Chen-Fei (武辰飞), Qian Hui-Min (钱慧敏), Zhou Dong (周东), Zhang Rong (张荣), Zheng You-Dou (郑有炓), Huang Xiao-Ming (黄晓明). Chin. Phys. B, 2015, 24(8): 088504.
[14] Temperature-dependent bias-stress-induced electrical instability of amorphous indium-gallium-zinc-oxide thin-film transistors
Qian Hui-Min (钱慧敏), Yu Guang (于广), Lu Hai (陆海), Wu Chen-Fei (武辰飞), Tang Lan-Feng (汤兰凤), Zhou Dong (周东), Ren Fang-Fang (任芳芳), Zhang Rong (张荣), Zheng You-Liao (郑有炓), Huang Xiao-Ming (黄晓明). Chin. Phys. B, 2015, 24(7): 077307.
[15] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin (佟晓林), Xia Xiao-Zhi (夏晓智), Li Qing-Xia (李青侠). Chin. Phys. B, 2015, 24(6): 067306.
No Suggested Reading articles found!