Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 045202    DOI: 10.1088/1674-1056/26/4/045202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture

Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉)
School of Science, Qiqihar University, Qiqihar 161006, China
Abstract  Physical qualities of dusty plasma in the pulsed radio-frequency C2H2/Ar microdischarges are carefully investigated by a one-dimensional hydrodynamic model and aerosol dynamics model. Since the thermophoretic force has a great effect on the nanoparticle density spatial distribution, the neutral gas energy equation is taken into accounted. The effects of pulse parameters (dust ratio, modulation frequency) on the nanoparticle formation and growth process are mainly discussed. The calculation results show that, as the duty ratio increases, the mode transition from the sheath oscillation (α regime) to the secondary electron heating (γ regime) occurred, which is quite different from the conventional pulsed discharge. Moreover, the effect of modulation frequency on the width of sheath and plasma density is analyzed. Compared with the H2CC- ions, the modulation frequency effect on the nanoparticles density becomes more prominent.
Keywords:  pulsed process parameters      C2H2/Ar microdischarges      dusty plasma  
Received:  22 October 2016      Revised:  22 December 2016      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.65.-y (Plasma simulation)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant Nos. A2015011 and A2015010), the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province, China (Grant No. LBH-Q14159), the National Natural Science Foundation of China (Grant Nos. 11404180 and 11405092), and the Program for Young Teachers Scientific Research in Qiqihar University, Heilongjiang Province, China (Grant No. 2014k-Z11).
Corresponding Authors:  Xiang-Mei Liu     E-mail:  lxmjsc98@163.com

Cite this article: 

Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉) Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture 2017 Chin. Phys. B 26 045202

[1] Daniels B K, Brown D W and Kimock F M 1997 J. Mater. Res. 12 2485
[2] Robertson J 2002 Mater. Sci. Eng. R. 37 129
[3] Xu N S and Huq S E 2005 Mater. Sci. Eng. R: Rep. 48 47
[4] De Bleecker K, Bogaerts A, Gijbels R and Goedheer W 2004 Phys. Rev. E 69 056409
[5] Ostrikov K 2005 Rev. Mod. Phys. 77 489
[6] Deschenaux Ch, Affolter A, Magni D, Hollenstein Ch and Fayet P 1999 J. Phys. D: Appl. Phys. 32 1876
[7] De Bleecker K, Bogaerts A and Goedheer W 2006 Phys. Rev. E 73 026405
[8] De Bleecker K, Bogaerts A and Goedheer W 2006 Appl. Phys. Lett. 88 151501
[9] Mao M, Benedikt J, Consoli A and Bogaerts A 2008 J. Phys. D: Appl. Phys. 41 225201
[10] Benedikt J, Consoli A, Schulze M and von Keudell A 2007 J. Phys. Chem. A 111 10453
[11] Moravej M 2006 Plasma Sourcs Sci. Technol. 15 204
[12] Kogelschatz U 2007 Contrib. Plasma Phys. 47 80
[13] Munoz-Serrano E, Hagelaar G, Callegari Th, Boeuf J and Pitchford L C 2006 Plasma Phys. Control. Fusion 48 B391
[14] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing, 2nd edn. (New York: Wiley-Interscience)
[15] Pai D, Stancu G, Lacoste D and Laux C 2009 Plasma Sources Sci. Technol. 18 045030
[16] Ito T, Kobayashi K, Czarnetzki U and Hamaguchi S 2010 J. Phys. D: Appl. Phys. 43 062001
[17] Lu X and Laroussi M 2006 J. Phys. D: Appl. Phys. 39 1127
[18] Laroussi M, Lu X, Kolobov V and Arslanbekov R 2004 J. Appl. Phys. 96 3028
[19] Pai D, Lacoste D and Laux C 2010 J. Appl. Phys. 107 093303
[20] Liu X M, Li Q N and Xu X 2014 Chin. Phys. B 23 085202
[21] Liu X M, Li Q N and Li R 2015 Chin. Phys. B 24 075204
[22] Iza F, Lee J K and Kong M G 2012 Phys. Rev. Lett. 99 075004
[23] Boeuf J P and Pitchford L C 1995 Phys. Rev. E 51 1376
[24] Wetering F, Beckers J and Kroesen G 2012 J. Phys. D: Appl. Phys. 45 485205
[1] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[2] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[3] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[4] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[5] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[6] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[7] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[8] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[9] On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas
M Shahmansouri, N Khodabakhshi. Chin. Phys. B, 2018, 27(10): 105206.
[10] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[11] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[12] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[13] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
[14] Impurity-induced local modes in one-dimensional dusty plasma chains
Ren Yong-Chao (任永超), Wang Xin-Shang (王欣上), Wang Xiao-Gang (王晓钢 ). Chin. Phys. B, 2012, 21(11): 115201.
[15] Effects of dust size distribution in ultracold quantum dusty plasmas
Qi Xue-Hong(祁学宏), Duan Wen-Shan(段文山), Chen Jian-Min(陈建敏), and Wang Shan-Jin(王善进) . Chin. Phys. B, 2011, 20(2): 025203.
No Suggested Reading articles found!