Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 038501    DOI: 10.1088/1674-1056/26/3/038501
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Graphene resistive random memory–the promising memory device in next generation

Xue-Feng Wang(王雪峰)1,2, Hai-Ming Zhao(赵海明)1,2, Yi Yang(杨轶)1,2, Tian-Ling Ren(任天令)1,2
1 Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
2 Tsinghua National Laboratory for Information Science and Technology(TNList), Tsinghua University, Beijing 100084, China
Abstract  

Graphene-based resistive random access memory (GRRAM) has grasped researchers' attention due to its merits compared with ordinary RRAM. In this paper, we briefly review different types of GRRAMs. These GRRAMs can be divided into two categories: graphene RRAM and graphene oxide (GO)/reduced graphene oxide (rGO) RRAM. Using graphene as the electrode, GRRAM can own many good characteristics, such as low power consumption, higher density, transparency, SET voltage modulation, high uniformity, and so on. Graphene flakes sandwiched between two dielectric layers can lower the SET voltage and achieve multilevel switching. Moreover, the GRRAM with rGO and GO as the dielectric or electrode can be simply fabricated. Flexible and high performance RRAM and GO film can be modified by adding other materials layer or making a composite with polymer, nanoparticle, and 2D materials to further improve the performance. Above all, GRRAM shows huge potential to become the next generation memory.

Keywords:  graphene-based resistive random access memory      graphene oxide (GO)/reduced graphene oxide (rGO)      resistive switching      graphene  
Received:  30 August 2016      Revised:  05 October 2016      Accepted manuscript online: 
PACS:  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  68.65.Pq (Graphene films)  
  88.30.mj (Composite materials)  
  72.80.Vp (Electronic transport in graphene)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61574083 and 61434001), the National Basic Research Program of China (Grant No. 2015CB352101), the National Key Research and Development Program of China (Grant No. 2016YFA0200404), the National Key Project of Science and Technology of China (Grant No. 2011ZX02403-002), Special Fund for Agroscientic Research in the Public Interest of China (Grant No. 201303107), the Independent Research Program of Tsinghua University, China (Grant No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen, China (Grant No. ZDSYS20140509172959969).

Corresponding Authors:  Yi Yang, Tian-Ling Ren     E-mail:  yiyang@tsinghua.edu.cn;RenTL@tsinghua.edu.cn

Cite this article: 

Xue-Feng Wang(王雪峰), Hai-Ming Zhao(赵海明), Yi Yang(杨轶), Tian-Ling Ren(任天令) Graphene resistive random memory–the promising memory device in next generation 2017 Chin. Phys. B 26 038501

[1] Russo U, Ielmini D, Cagli C and Lacaita A L 2009 IEEE Trans. Electron Devices 56 193
[2] Wong H-S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Proc. IEEE 100 1951
[3] Bersuker G, Gilmer D, Veksler D, Kirsch P, Vandelli L, Padovani A and Iglesias V 2011 J. Appl. Phys. 110 124518
[4] Yu S, Guan X and Wong H S P 2011 IEEE International Electron Devices Meeting, December 5-7, 2011, Washington, D.C., USA, p. 17.3.1
[5] Hosoi Y, Tamai Y, Ohnishi T, Ishihara K, Shibuya T, Inoue Y, Yamazaki S, Nakano T, Ohnishi S and Awaya N 2006 International Electron Devices Meeting, December 11-13, 2006, San Francisco, USA, p. 1
[6] Ielmini D 2011 IEEE Trans. Electron Devices 58 4309
[7] Wang L, Yang C H and Wen J 2015 Electron. Mater. Lett. 11 505
[8] Meena J S, Sze S M, Chand U and Tseng T Y 2014 Nanoscale Res. Lett. 9 1
[9] Choi B J, Torrezan A C, Norris K J, Miao F, Strachan J P, Zhang M X, Ohlberg D A, Kobayashi N P, Yang J J and Williams R S 2013 Nano Lett. 13 3213
[10] Lee M J, Lee C B, Lee D, Lee S R, Chang M, Hur J H, Kim Y B, Kim C J, Seo D H and Seo S 2011 Nat. Mater. 10 625
[11] Wei Z, Kanzawa Y, Arita K, Katoh Y, Kawai K, Muraoka S, Mitani S, Fujii S, Katayama K and Iijima M 2008 IEEE International Electron Devices Meeting, December 15-17, 2008, San Francisco, USA, p. 1
[12] Guan X, Yu S and Wong H S P 2012 IEEE Trans. Electron Devices 59 1172
[13] Yu S, Guan X and Wong H S P 2012 IEEE Trans. Electron Devices 59 1183
[14] Sheridan P, Kim K H, Gaba S, Chang T, Chen L and Lu W 2011 Nanoscale 3 3833
[15] Celano U, Chen Y Y, Wouters D J, Groeseneken G, Jurczak M and Vandervorst W 2013 Appl. Phys. Lett. 102 121602
[16] Chang W Y, Lai Y C, Wu T B, Wang S F, Chen F and Tsai M J 2008 Appl. Phys. Lett. 92 2110
[17] Wu X, Zhou P, Li J, Chen L, Lv H, Lin Y and Tang T 2007 Appl. Phys. Lett. 90 183507
[18] Jeong H Y, Kim Y I, Lee J Y and Choi S Y 2010 Nanotechnology 21 115203
[19] Son J Y, Shin Y H, Kim H and Jang H M 2010 ACS Nano 4 2655
[20] Zhang H, Liu L, Gao B, Qiu Y, Liu X, Lu J, Han R, Kang J and Yu B 2011 Appl. Phys. Lett. 98 042105
[21] Wu Y, Yu S, Lee B and Wong P 2011 J. Appl. Phys. 110 094104
[22] Wang Z, Zeng F, Yang J, Chen C, Yang Y and Pan F 2010 Appl. Phys. Lett. 97 253301
[23] Chen Y C, Chen C, Chen C, Yu J, Wu S, Lung S, Liu R and Lu C Y 2003 International Electron Devices Meeting, December 8-10, 2003, Washington, D.C., USA, p. 37.4.1
[24] Novoselov K, Geim A K, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S and Firsov A 2005 Nature 438 197
[25] Orlita M, Faugeras C, Plochocka P, Neugebauer P, Martinez G, Maude D K, Barra A L, Sprinkle M, Berger C and De Heer W A 2008 Phys. Rev. Lett. 101 267601
[26] Peres N, Guinea F and Neto A C 2006 Phys. Rev. B 73 125411
[27] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[28] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[29] Sun Z S, Zhang L and Gao F 2016 Chin. Phys. B 25 0108701
[30] Jiang R, Wu Z R, Han Z Y and Jung H S 2016 Chin. Phys. B. 25 0106803
[31] Lin Y M, Jenkins K A, Valdes-Garcia A, Small J P, Farmer D B and Avouris P 2008 Nano Lett. 9 422
[32] Feng T, Xie D, Lin Y, Zang Y, Ren T, Song R, Zhao H, Tian H, Li X and Zhu H 2011 Appl. Phys. Lett. 99 233505
[33] Tian H, Xie D, Yang Y, Ren T L, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Nanoscale 4 2272
[34] Schedin F, Geim A, Morozov S, Hill E, Blake P, Katsnelson M and Novoselov K 2007 Nat. Mater. 6 652
[35] Liu N, Tian H, Schwartz G, Tok J B H, Ren T L and Bao Z 2014 Nano Lett. 14 3702
[36] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I and Tutuc E 2009 Science 324 1312
[37] Losurdo M, Giangregorio M M, Capezzuto P and Bruno G 2011 PCCP 13 20836
[38] Hirata M, Gotou T and Ohba M 2005 Carbon 43 503
[39] Strong V, Dubin S, El-Kady M F, Lech A, Wang Y, Weiller B H and Kaner R B 2012 ACS Nano 6 139
[40] El-Kady M F, Strong V, Dubin S and Kaner R B 2012 Science 335 1326
[41] Gómez-Navarro C, Weitz R T, Bittner A M, Scolari M, Mews A, Burghard M and Kern K 2007 Nano Lett. 7 3499
[42] Eda G, Fanchini G and Chhowalla M 2008 Nat. Nanotechnol. 3 270
[43] Tian H, Shu Y, Wang X F, Mohammad M A, Bie Z, Xie Q Y, Li C, Mi W T, Yang Y and Ren T L 2015 Sci. Rep. 5
[44] Tian H, Xie D, Yang Y, Ren T L, Zhang G, Wang Y F, Zhou C J, Peng P G, Wang L G and Liu L T 2012 Sci. Rep. 2 523
[45] Tian H,Yang Y, Xie D, Ren T L, Shu Y, Zhou C J, Tao L Q and Liu L T 2013 IEEE 26th International Conference, September 4-6 2013, Erlangen, Germany, p. 709
[46] Tian H, Yang Y, Xie D, Ge J and Ren T L 2013 RSC Adv. 3 17672
[47] Tian H, Shu Y, Cui Y L, Mi W T, Yang Y, Xie D and Ren T L 2014 Nanoscale 6 699
[48] Wang X, Tian H, Mohammad M A, Li C, Wu C, Yang Y and Ren T L 2015 Nat. Commun. 6 7767
[49] Xia F, Perebeinos V, Lin Y M, Wu Y and Avouris P 2011 Nat. Nanotechnol. 6 179
[50] Chen H Y, Tian H, Gao B, Yu S, Liang J, Kang J, Zhang Y, Ren T L and Wong H S P 2012 IEEE International Electron Devices Meeting, December 10-13, 2012, San Francisco, USA, p. 20.5.1
[51] Tian H, Chen H Y, Gao B, Yu S, Liang J, Yang Y, Xie D, Kang J, Ren T L and Zhang Y 2013 Nano Lett. 13 651
[52] Ferrari A C 2007 Solid State Commun. 143 47
[53] Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944
[54] Jeon H, Park J, Jang W, Kim H, Ahn S, Jeon K J, Seo H and Jeon H 2014 Carbon 75 209
[55] Chen H Y, Yu S, Gao B, Liu R, Jiang Z, Deng Y, Chen B, Kang J and Wong H P 2013 Nanotechnology 24 465201
[56] Sohn J, Lee S, Jiang Z, Chen H Y and Wong H S P 2014 IEEE International Electron Devices Meeting, December 15-17, 2014, San Francisco, USA, p. 5.3.1
[57] Deng Y, Chen H Y, Gao B, Yu S, Wu S C, Zhao L, Chen B, Jiang Z, Liu X and Hou T H 2013 IEEE International Electron Devices Meeting, December 9-11, 2013, Washington, D.C., USA, p. 25.7.1
[58] Cheng H, Chen S, Yu P, Duan X, Xie B and Tian, J 2013 Appl. Phys. Lett. 103 203112
[59] Bae S, Kim H, Lee Y, Xu X, Park J S, Zheng Y, Balakrishnan J, Lei T, Kim H R and Song Y I 2010 Nat. Nanotechnol. 5 574
[60] Yang P K, Chang W Y, Teng P Y, Jeng S F, Lin S J, Chiu P W and He J H 2013 Proc. IEEE 101 1732
[61] Sato Y, Takai K and Enoki T 2011 Nano Lett. 11 3468
[62] Chang W, Chu J and Wang S 2012 Appl. Phys. Lett. 101 012102
[63] Zhao H, Tu H, Wei F, Xiong Y, Zhang X and Du J 2013 RRL-Rapid Res. Lett. 7 1005
[64] Cao X, Li X, Gao X, Yu W, Liu X, Zhang Y, Chen L and Cheng X 2009 J. Appl. Phys. 106 073723
[65] Zhao H, Tu H, Wei F and Du J 2014 IEEE Trans. Electron Devices 61 1388
[66] Thomas G 1997 Nature 389 907
[67] Lu H, Sun K, Zhang K, Wang F, Miao Y and Wang B 2014 ECS Trans. 60 545
[68] Seo S, Lee M, Kim D, Ahn S, Park B H, Kim Y, Yoo I, Byun I, Hwang I and Kim S 2005 Appl. Phys. Lett. 87 263507
[69] Son J Y, Shin Y H, Kim H and Jang H M 2010 ACS Nano 4 2655
[70] Nagaraj B, Wu T, Ogale S, Venkatesan T and Ramesh R 2002 J. Electroceram. 8 233
[71] Kim W H, Park C S and Son J Y 2014 Carbon 79 388
[72] Li C X, Deng X Q and Sun L 2016 Acta Phys. Sin. 65 068503 (in Chinese)
[73] McCann E 2006 Phys. Rev. B 74 161403
[74] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[75] Castro E V, Novoselov K, Morozov S, Peres N, Dos Santos J L, Nilsson J, Guinea F, Geim A and Neto A C 2007 Phys. Rev. Lett. 99 216802
[76] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[77] Tian H, Zhao H, Wang X F, Xie Q Y, Chen H Y, Mohammad M A, Li C, Mi W T, Bie Z, Chao H Y, Yang Y, Wong H P, Chiu P W and Ren T L 2015 Adv. Mater. 27 7767
[78] Rozenberg M, Inoue I and Sanchez M 2004 Phys. Rev. Lett. 92 178302
[79] Waser R and Aono M 2007 Nat. Mater. 6 833
[80] Lee S R, Kim Y B, Chang M, Kim K M, Lee C B, Hur J H, Park G S, Lee D, Lee M J and Kim C J 2012 Symposium on VLSI Technology, June 12-14, 2012, Honolulu, USA, p. 71
[81] Wu M C, Lin Y W, Jang W Y, Lin C H and Tseng T Y 2011 IEEE Electron Device Lett. 32 1026
[82] He C, Shi Z, Zhang L, Yang W, Yang R, Shi D and Zhang G 2012 ACS Nano 6 4214
[83] Liao A D, Wu J Z, Wang X, Tahy K, Jena D, Dai H and Pop E 2011 Phys. Rev. Lett. 106 256801
[84] Yu S, Guan X and Wong H S P 2011 Appl. Phys. Lett. 99 063507
[85] Valanarasu S, Kathalingam A, Senthilkumar V, Kannan V and Rhee J 2012 Electron. Mater. Lett. 8 649
[86] Khurana G, Misra P and Katiyar R S 2014 Carbon 76 341
[87] Kane B 2010 Phys. Rev. B 82 115441
[88] Yang R, Zhu C, Meng J, Huo Z, Cheng M, Liu D, Yang W, Shi D, Liu M and Zhang G 2013 Sci. Rep. 3 2126
[89] Rose A 1955 Phys. Rev. 97 1538
[90] Tian H, Chen H Y, Ren T L, Li C, Xue Q T, Mohammad M A, Wu C, Yang Y and Wong H S P 2014 Nano Lett. 14 3214
[91] Fang Z, Yu H, Li X, Singh N, Lo G and Kwong D 2011 IEEE Electron Device Lett. 32 566
[92] Miao F, Strachan J P, Yang J J, Zhang M X, Goldfarb I, Torrezan A C, Eschbach P, Kelley R D, Medeiros-Ribeiro G and Williams R S 2011 Adv. Mater. 23 5633
[93] Panin G N, Kapitanova O O, Lee S W, Baranov A N and Kang T W 2011 Jpn. J. Appl. Phys. 50 070110
[94] Jilani S M, Gamot T D, Banerji P and Chakraborty S 2013 Carbon 64 187
[95] Yuan F, Ye Y R, Wang J C, Zhang Z, Pan L, Xu J and Lai C S 2013 IEEE 5th International Nanoelectronics Conference, January 2-4 2013, Singapore, p. 288
[96] Kapitanova O, Panin G, Kononenko O, Baranov A and Kang T 2014 J. Korean Phys. Soc. 64 1399
[97] Yi M D, Guo J L, Hu B, Xia X H, Fan Q L, Xie L H and Huang W 2015 Chin. Phys. Lett. 32 077201
[98] Eda G, Mattevi C, Yamaguchi H, Kim H and Chhowalla M 2009 J. Phys. Chem. C 113 15768
[99] Ekiz O O, Urel M, Guner H, Mizrak A K and D'ana A 2011 ACS Nano 5 2475
[100] Lim E W, Ahmadi M T and Ismail R 2016 J. Comput. Electron. 15 602
[101] Herrmann M and Schenk A 1995 J. Appl. Phys. 77 4522
[102] Bocquet M, Deleruyelle D, Muller C and Portal J M 2011 Appl. Phys. Lett. 98 263507
[103] Grierson D S, Sumant A, Konicek A, Friedmann T, Sullivan J and Carpick R W 2010 J. Appl. Phys. 107 033523
[104] Laidler K J 1984 J. Chem. Educ. 61 494
[105] Lampert M A 1956 Phys. Rev. 103 1648
[106] Zhuang X D, Chen Y, Liu G, Li P P, Zhu C X, Kang E T, Noeh K G, Zhang B, Zhu J H and Li Y X 2010 Adv. Mater. 22 1731
[107] He C, Zhuge F, Zhou X, Li M, Zhou G, Liu Y, Wang J, Chen B, Su W and Liu Z 2009 Appl. Phys. Lett. 95 232101
[108] Jeong H Y, Kim J Y, Kim J W, Hwang J O, Kim J E, Lee J Y, Yoon T H, Cho B J, Kim S O and Ruoff R S 2010 Nano Lett. 10 4381
[109] Lee D H, Kim J E, Han T H, Hwang J W, Jeon S, Choi S Y, Hong S H, Lee W J, Ruoff R S and Kim S O 2010 Adv. Mater. 22 1247
[110] Kim S K, Kim J Y, Choi S Y, Lee J Y and Jeong H Y 2015 Adv. Funct. Mater. 25 6710
[111] Zhuge F, Hu B, He C, Zhou X, Liu Z and Li R W 2011 Carbon 49 3796
[112] Wang Z, Tjoa V, Wu L, Liu W, Fang Z, Tran X, Wei J, Zhu W and Yu H 2012 J. Electrochem. Soc. 159 K177
[113] Kim I, Siddik M, Shin J, Biju K P, Jung S and Hwang H 2011 Appl. Phys. Lett. 99 042101
[114] Li S L, Liao Z, Li J, Gang J and Zheng D 2009 J. Phys. D: Appl. Phys. 42 045411
[115] Nian Y, Strozier J, Wu N, Chen X and Ignatiev A 2007 Phys. Rev. Lett. 98 146403
[116] Hu B, Quhe R, Chen C, Zhuge F, Zhu X, Peng S, Chen X, Pan L, Wu Y and Zheng W 2012 J. Mater. Chem. 22 16422
[117] Wu C, Li F, Zhang Y, Guo T and Chen T 2011 Appl. Phys. Lett. 99 042108
[118] Li Y, Ni X and Ding S 2015 J. Mater. Sci. Mater. Electron. 26 9001
[119] Myung S, Park J, Lee H, Kim K S and Hong S 2010 Adv. Mater. 22 2045
[120] Wang W and Ma D G 2010 Chin. Phys. Lett. 27 018503
[121] Midya A, Gogurla N and Ray S K 2015 Curr. Appl Phys. 15 706
[122] Pinto S, Krishna R, Dias C, Pimentel G, Oliveira G, Teixeira J, Aguiar P, Titus E, Gracio J and Ventura J 2012 Appl. Phys. Lett. 101 063104
[123] Radisavljevic B, Radenovic A, Brivio J, Giacometti i V and Kis A. 2011 Nat. Nanotechnol. 6 147
[124] Shao P Z, Zhao H M, Cao H W, Wang X F, Pang Y, Li Y X, Deng N Q, Zhang J, Zhang G Y, Yang Y, Zhang S and Ren T L 2016 Appl. Phys. Lett. 108 203105
[125] Cao H W, Zhao H M, Xin X, Shao P Z, Qi H Y, Jian M Q, Zhang Y Y, Yang Y and Ren T L 2016 Mod. Phys. Lett. B 30 1650267
[126] Podzorov V, Gershenson M, Kloc C, Zeis R and Bucher E 2004 Appl. Phys. Lett. 84 3301
[127] Liu W, Kang J, Sarkar D, Khatami Y, Jena D and Banerjee K 2013 Nano Lett. 13 1983
[128] Yin Z, Zeng Z, Liu J, He Q, Chen P and Zhang H 2013 Small 9 727
[1] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
No Suggested Reading articles found!