Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036101    DOI: 10.1088/1674-1056/26/3/036101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Intrinsic luminescence centers in γ- and θ-alumina nanoparticles

Abdolvahab Amirsalari1, Saber Farjami Shayesteh1, Reza Taheri Ghahrizjani2
1 Nanostructures Labratory, Department of Physics, University of Guilan, Rasht, Iran;
2 Department of Physics, Optics and Laser Group, Shahreza Branch, Islamic Azad University, Isfahan, Iran
Abstract  In this study, we investigate the photoluminescence (PL) properties of γ and θ-alumina nanoparticles synthesized by the chemical wet method followed by annealing. The obtained experimental results indicate the presence of some favorable near ultraviolet (NUV)-orange luminescent centers for usage in various luminescence applications, such as oxygen vacancies (F, F2+, F22+, and F2 centers), OH related defects, cation interstitial centers, and some new luminescence bands attributed to trapped-hole centers or donor-acceptor centers. The energy states of each defect are discussed in detail. The defects mentioned could alter the electronic structure by producing some energy states in the band gap that result in the optical absorption in the middle ultraviolet (MUV) region. Spectra show that photoionazation of F and F2 centers plays a crucial role in providing either free electrons for the conduction band, or the photoconversions of aggregated oxygen vacancies into each other, or mobile electrons for electrons-holes recombination process by the Shockley-Read-Hall (SRH) mechanism.
Keywords:  photoluminescence center      defect      oxygen vacancy      emission  
Received:  25 June 2016      Revised:  15 November 2016      Accepted manuscript online: 
PACS:  61.46.Hk (Nanocrystals)  
  78.55.Hx (Other solid inorganic materials)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  81.07.Bc (Nanocrystalline materials)  
Corresponding Authors:  Saber Farjami Shayesteh, Reza Taheri Ghahrizjani     E-mail:  saber@guilan.ac.ir;Taheri.reza@iaush.ac.ir

Cite this article: 

Abdolvahab Amirsalari, Saber Farjami Shayesteh, Reza Taheri Ghahrizjani Intrinsic luminescence centers in γ- and θ-alumina nanoparticles 2017 Chin. Phys. B 26 036101

[1] Heimann R B 2010 Classic and Advanced Ceramics: from Fundamentals to Applications John Wiley & Sons
[2] Costina I and Franchy R 2001 Appl. Phys. Lett. 78 4139
[3] Ealet B, Elyakhloufi M, Gillet E and Ricci M 1994 Thin Solid Films 250 92
[4] Carrasco J, Gomes J R and Illas F 2004 Phys. Rev. B 69 064116
[5] Aliabad H R 2015 Chin. Phys. B 24 097102
[6] Guo Q L 2001 Chin. Phys. B 1080
[7] Ya-Bin W, Gang Z, Ming-Jie L, Xiang-Long C and Jun C 2009 Chin. Phys. B 181181
[8] Khatibani A B and Rozati S 2014 Mater. Sci. Semicond. Process. 18 80
[9] Dhonge B P, Mathews T, Sundari S T, Thinaharan C, Kamruddin M, Dash S and Tyagi A 2011 Appl. Surf. Sci. 258 1091
[10] Bouifoulen A, Edely M, Errien N, Kassiba A, Outzourhit A, Makowska-Janusik M, Gautier N, Lajaunie L and Oueriagli A 2011 Thin Solid Films 519 2141
[11] Evans B D 1995 J. Nucl. Mater. 219 202
[12] Gillet E and Ealet B 1992 Surf. Sci. 273 427
[13] Boumaza A, Djelloul A and Guerrab F 2010 Powder Technol. 201 177
[14] Kortov V, Ermakov A, Zatsepin A and Nikiforov S 2008 Radiat. Meas. 43 341
[15] Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2010 Opt. Mater. 32 789
[16] Surdo A, Kortov V and Pustovarov V 2001 Radiat. Meas. 33 587
[17] Caulfield K J, Cooper R and Boas J F 1993 Phys. Rev. B 47 55
[18] Springis M and Valbis J 1984 Phys. Status Solidi (b) 123 335
[19] Ramírez R, Tardío M, González R, Munoz Santiuste J and Kokta M 2007 J. Appl. Phys. 101 3520
[20] Ikeda S and Uchino T 2014 J. Phys. Chem. C 118 4346
[21] Ramírez R, Tardío M, González R, Chen Y and Kokta M 2005 Appl. Phys. Lett. 86 1914
[22] Carrasco J, Lopez N, Sousa C and Illas F 2005 Phys. Rev. B 72 054109
[23] Kabler M, Crawford J and Slifkin L M 1972 Plenum New York 291
[24] Liu Y L, Liu G P, Wang W Y, Qi Z Q, Chen C Q and Wang Z G 2016 Chin. Phys. B 25 87801
[25] Brewer J, Jeffries B and Summers G P 1980 Phys. Rev. B 22 4900
[26] Perevalov T, Tereshenko O, Gritsenko V, Pustovarov V, Yelisseyev A, Park C, Han J H and Lee C 2010 J. Appl. Phys. 108 013501
[27] Breysse M, Coudurier G, Claudel B and Faure L 1982 J. Lumin. 26 239
[28] Malo M, Morono A and Hodgson E 2014 Fusion Eng. Des. 89 2179
[29] Amirsalari A and Shayesteh S F 2015 Superlattices Microstruct. 82 507
[30] Kulis P, Springis M, Tale I, Vainer V and Valbis J 1981 Phys. Status Solidi (b) 104 719
[31] Kulis P, Springis M, Tale I and Valbis J 1980 Phys. Status Solidi (a) 58 225
[32] Lee K H, Holmberg G and Crawford J 1977 Phys. Status Solidi (a) 39 669
[33] Kortov V, Bessonova T, Akselrod M and Milman I 1985 Phys. Status Solidi (a) 87 629
[34] Flerov A, Flerov V and Litvinov L 1991 J. Appl. Spectrosc. 54 167
[35] Huang G, Wu X, Yang L, Shao X, Siu G and Chu P 2005 Appl. Phys. A 81 1345
[36] El Mir L, Amlouk A and Barthou C 2006 J. Phys. Chem. Solids 67 2395
[37] Trinkler L, Berzina B, Jakimovica D, Grabis J and Steins I 2011 Opt. Mater. 33 817
[38] Gorbunov S, Cholakh S, Pustovarov V, Yakovlev V Y, Zatsepin A and Kucharenko A 2005 Phys. Status Solidi (c) 2 351
[39] Li B, Hinklin T, Laine R and Rand S 2007 J. Lumin. 122 345
[40] Pustovarov V, Aliev V S, Perevalov T, Gritsenko V and Eliseev A 2010 J. Exp. Theor. Phys. 111 989
[41] Matsunaga K, Tanaka T, Yamamoto T and Ikuhara Y 2003 Phys. Rev. B 68 085110
[42] Chen W, Song P, Dong Y, Zhang Y and Hua W 2013 Chin. Sci. Bull. 58 1964
[43] Muthe K, Sudarshan K, Pujari P, Kulkarni M, Rawat N, Bhatt B and Gupta S 2009 J. Phys. D: Appl. Phys. 42 105405
[44] Uenaka Y and Uchino T 2011 Phys. Rev. B 83 195108
[45] Uzun E, Yarar Y and Yazici A N 2011 J. Lumin. 131 2625
[46] Vreeker R, Kuzakov S and Glasbeek M 1985 Solid State Commun. 55 1039
[47] Eglitis R, Kuklja M, Kotomin E, Stashans A and Popov A 1996 Comput. Mater. Sci. 5 298
[48] Surdo A and Kortov V 2004 Radiat. Meas. 38 667
[49] Stashans A, Kotomin E and Calais J L 1994 Phys. Rev. B 49 14854
[50] Bartram R, Swenberg C and Fournier J 1965 Phys. Rev. 139 A941
[51] Sokol A A, Walsh A and Catlow C R A 2010 Chem. Phys. Lett. 492 44
[52] Lee K, Holmberg G and Crawford J 1976 Solid State Commun. 20 183
[53] Rao T G, Bhatt B and Page P 2008 Radiat. Meas. 43 295
[54] El-Mansy M, Diefallah E and Shash N 1995 Radiat. Phys. Chem. 45 151
[55] Varley J, Janotti A, Franchini C and Van de Walle C 2012 Phys. Rev. B 85 081109
[56] Jacobs P W and Kotomin E A 1994 J. Am. Ceram. Soc. 77 2505
[57] Otto T N 2013 Optoelectronic Properties of Lead Selenide Quantum Dot Thin Films
[58] Li Z and Huang K 2007 J. Lumin. 127 435
[59] Ortiz A, Alonso J, Pankov V and Albarran D 1999 J. Lumin. 81 45
[60] Shen Y F, Suib S L, Deeba M and Koermer G 1994 J. Catal. 146 483
[61] Stoyanovskii V and Snytnikov V 2009 Kinet. Catal. 50 450
[1] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[10] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[11] Direct visualization of structural defects in 2D semiconductors
Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李晓梅), Zheng Wei(魏争), Lu Li(李璐), Yalin Peng(彭雅琳), Wei Yang(杨威), Rong Yang(杨蓉), Dongxia Shi(时东霞), Xuedong Bai(白雪冬), Luojun Du(杜罗军), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(7): 076105.
[12] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[13] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
No Suggested Reading articles found!