Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 034208    DOI: 10.1088/1674-1056/26/3/034208
Special Issue: TOPICAL REVIEW — 2D materials: physics and device applications
TOPICAL REVIEW—2D materials: physics and device applications Prev   Next  

Band gap engineering of atomically thin two-dimensional semiconductors

Cui-Huan Ge(葛翠环), Hong-Lai Li(李洪来), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练)
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  

Atomically thin two-dimensional (2D) layered materials have potential applications in nanoelectronics, nanophotonics, and integrated optoelectronics. Band gap engineering of these 2D semiconductors is critical for their broad applications in high-performance integrated devices, such as broad-band photodetectors, multi-color light emitting diodes (LEDs), and high-efficiency photovoltaic devices. In this review, we will summarize the recent progress on the controlled growth of composition modulated atomically thin 2D semiconductor alloys with band gaps tuned in a wide range, as well as their induced applications in broadly tunable optoelectronic components. The band gap engineered 2D semiconductors could open up an exciting opportunity for probing their fundamental physical properties in 2D systems and may find diverse applications in functional electronic/optoelectronic devices.

Keywords:  2D semiconductors      band gap engineering      alloys      atomically thin  
Received:  16 December 2016      Revised:  31 January 2017      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  71.20.Be (Transition metals and alloys)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11374092, 61474040, 61574054, and 61505051), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China, and the Science and Technology Department of Hunan Province, China (Grant No. 2014FJ2001).

Corresponding Authors:  An-Lian Pan, Xiao-Li Zhu     E-mail:  anlian.pan@hnu.edu.cn;zhuxiaoli@hnu.edu.cn

Cite this article: 

Cui-Huan Ge(葛翠环), Hong-Lai Li(李洪来), Xiao-Li Zhu(朱小莉), An-Lian Pan(潘安练) Band gap engineering of atomically thin two-dimensional semiconductors 2017 Chin. Phys. B 26 034208

[1] Zhang L, Yu J, Yang M, Xie Q, Peng H and Liu Z 2013 Nat. Commun. 4 1443
[2] Freitag M, Low T, Zhu W, Yan H, Xia F and Avouris P 2013 Nat. Commun. 4 1951
[3] Weiss N O, Zhou H, Liao L, Liu Y, Jiang S, Huang Y and Duan X 2012 Adv. Mater. 24 5782
[4] Yan K, Wu D, Peng H, Jin L, Fu Q, Bao X and Liu Z 2012 Nat. Commun. 3 1280
[5] Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P and Xia F 2012 Nat. Nanotechnol. 7 330
[6] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[7] Voiry D, Yamaguchi H, Li J, Silva R, Alves D, Fujita T, Chen M, Asefa T, Shenoy V, Eda G and Chhowalla M 2013 Nat. Mater. 12 850
[8] Tongay S, Sahin H, Ko C, Luce A, Fan W, Liu K, Zhou J, Huang Y, Ho C, Yan J, Ogletree D F, Aloni S, Ji J, Li S, Li J, Peeters F M and Wu J 2014 Nat. Commun. 5 3252
[9] Liu J, Xia C, Li H and Pan A 2016 Nanotechnology 27 34LT01
[10] Gong Y, Lin J, Wang X, Shi G, Lei S, Lin Z, Zou X, Ye G, Vajtai R, Yakobson B, Terrones H, Terrones M, Tay B K, Lou J, Pantelides S T, Liu Z, Zhou W and Ajayan P M 2014 Nat. Mater. 13 1135
[11] Duan X, Wang C, Shaw J, Cheng R, Chen Y, Li H, Wu X, Tang Y, Zhang Q, Pan A, Jiang J, Yu R, Huang Y and Duan X F 2014 Nat. Nanotechnol. 9 1024
[12] Li M, Shi Y, Cheng C, Lu L, Lin Y, Tang H, Tsai M, Chu C, Wei K, He J, Chang W, Suenaga K and Li L 2015 Science 349 524
[13] Huang C, Wu S, Sanchez A, Peters J, Beanland R, Ross J, Rivera P, Yao W, Cobden D and Xu X 2014 Nat. Mater. 13 1096
[14] Zhang X, Lin C, Tseng Y, Huang K and Lee Y 2014 Nano Lett. 15 410
[15] Gong Y, Lei S, Ye G, Li B, He Y, Keyshar K, Zhang X, Wang Q, Lou J, Liu Z, Vajtai R, Zhou W and Ajayan P M 2015 Nano Lett. 15 6135
[16] Duan X, Wang C, Pan A, Yu R and Duan X 2015 Chem. Soc. Rev. 44 8859
[17] Xie L M 2015 Nanoscale 7 18392
[18] Shi Y, Li H and Li L J 2015 Chem. Soc. Rev. 44 2744
[19] Kutana A, Penev E S and Yakobson B I 2014 Nanoscale 6 5820
[20] Pan A, Yang H, Liu R, Yu R, Zou B and Wang Z 2005 J. Am. Chem. Soc. 127 15692
[21] Pan A, Yang H, Yu R and Zou B 2006 Nanotechnology 17 1083
[22] Pan A, Liu R, Wang F, Zou B, Zacharias M and Wang Z 2006 J. Phys. Chem. B 110 22313
[23] Pan A, Wang X, He P, Zhang Q, Wan Q, Zacharias M, Zhu X and Zou B 2007 Nano Lett. 7 2970
[24] Pan A L, Yao L, Qin Y, Yang Y, Kim D S, Yu R, Zou B, Werner P, Zacharias Z and Goesele U 2008 Nano Lett. 8 3413
[25] Pan A, Liu R, Sun M and Ning C 2009 J. Am. Chem. Soc. 131 9502
[26] Pan A, Liu R, Sun M, Sun M and Ning C 2010 ACS Nano 4 671
[27] Gu F, Yang Z, Yu H, Xu J, Wang P, Tong L and Pan A 2011 J. Am. Chem. Soc. 133 2037
[28] Yang Z, Xu J, Wang P, Zhuang X, Pan A and Tong L 2011 Nano Lett. 11 5085
[29] Liu R B, Zhuang X J, Xu J Y, Li D B, Zhang Q, Ding K, He P, Ning C, Zou B and Pan A 2011 Appl. Phys. Lett. 99 263101
[30] Zhuang X, Ning C Z and Pan A 2012 Adv. Mater. 24 13
[31] Xu J, Ma L, Guo P, Zhuang X, Zhu X, Hu W, Duan X and Pan A 2012 J. Am. Chem. Soc. 134 12394
[32] Xu J, Zhuang X, Guo P, Zhang Q, Huang W, Wan Q, Hu W, Wang X, Zhu X, Fan C, Yang Z, Tong L, Duan X and Pan A 2012 Nano Lett. 12 5003
[33] Xu J, Zhuang X, Guo P, Huang W, Hu W, Zhang Q, Wan Q, Zhu X, Yang Z, Tong L, Duan X and Pan A 2012 Sci. Rep. 2 820
[34] Wang Y, Xu J, Ren P, Zhang Q, Zhuang X, Zhu X, Wan Q, Zhou H, Hu W and Pan A 2013 Phys. Chem. Chem. Phys. 15 2912
[35] Guo P, Zhuang X, Xu J, Zhang Q, Hu W, Zhu X, Wang X, Wan Q, He P, Zhou H and Pan A 2013 Nano Lett. 13 1251
[36] Guo P, Hu W, Zhang Q, Zhuang X, Zhu X, Zhou H, Shan Z, Xu J and Pan A 2014 Advanced Materials 26 2844
[37] Ma L, Hu W, Zhang Q, Ren P, Zhuang X, Zhou H, Xu J, Li H, Shan Z, Wang X, Liao L, Xu H Q and Pan A 2014 Nano Lett. 14 694
[38] Ren P, Hu W, Zhang Q, Zhu X, Zhuang X, Ma L, Fan X, Zhou H, Liao L, Duan X and Pan A 2014 Adv. Mater. 26 7444
[39] Guo P, Xu J, Gong K, Shen X, Lu Y, Qiu Y, Xu J, Zou Z, Wang C, Yan H, Luo Y, Pan A, Zhang H, Ho J C and Yu K M 2016 ACS Nano 10 8474
[40] Komsa H P and Krasheninnikov A V 2012 J. Phys. Chem. Lett. 3 3652
[41] Rajbanshi B, Sarkar S and Sarkar P 2015 Physical Chemistry Chemical Physics 17 26166
[42] Ersan F, Gökoğlu G and Aktürk E 2015 J. Phys. Chem. C 119 28648
[43] Kou L, Frauenheim T and Chen C 2013 J. Phys. Chem. Lett. 4 1730
[44] Tan C, Zhao W, Chaturvedi A, et al. 2016 Small 12 1866
[45] Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J and Xie L 2014 Adv. Mater. 26 2648
[46] Li H, Duan X, Wu X, Zhuang X, Zhou H, Zhang Q, Zhu X, Hu W, Ren P, Guo P, Ma L, Fan X, Wang X, Xu J and Pan A 2014 J. Am. Chem. Soc. 136 3756
[47] Gong Y, Liu Z, Lupini A R, Shi G, Lin J, Najmaei S, Lin Z, Elías A, Berkdemir A, You G, Terrones H, Terrones M, Vajtai R, Pantelides S T, Pennycook S J, Lou J, Zhou W and Ajayan P M 2013 Nano Lett. 14 442
[48] Ma Q, Isarraraz M, Wang C S, et al. 2014 ACS Nano 8 4672
[49] Gong Q, Cheng L, Liu C, Zhang M, Feng Q, Ye H, Zeng M, Xie L, Liu Z and Li Y 2015 ACS Catalysis 5 2213
[50] Meiron O E, Houben L and Bar-Sadan M 2015 RSC Adv. 5 88108
[51] Li H, Zhang Q, Duan X, Wu X, Fan X, Zhu X, Zhuang X, Hu W, Zhou H, Pan A and Duan X 2015 J. Am. Chem. Soc. 137 5284
[52] Chen X, Wang Z, Qiu Y, Zhang J, Liu G, Zheng W, Feng W, Cao W, Hu P and Hu W 2016 J. Mater. Chem. A 4 18060
[53] Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L and Xu X 2015 Nanoscale 7 13554
[54] Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J and Xie L 2015 ACS Nano 9 7450
[55] Xia B, An L, Gao D, Shi S, Xi P and Xue D 2015 Cryst. Eng. Comm. 17 6420
[56] Mann J, Ma Q, Odenthal P M, et al. 2014 Adv. Mater. 26 1399
[57] Kiran V, Mukherjee D, Jenjeti R N and Sampath S 2014 Nanoscale 6 12856
[58] Kou L, Frauenheim T and Chen C 2013 J. Phys. Chem. Lett. 4 1730
[59] Yang Y, Wang S, Zhang J, Li H, Tang Z and Wang X 2015 Inorganic Chemistry Frontiers 2 931
[60] Klee V, Preciado E, Barroso D, Nguyen A, Lee C, Erickson K, Triplett M, Davis B, Lu I, Bobek S, McKinley J, Martinez J, Mann J, Talin A, Bartels L and Léonard F 2015 Nano Lett. 15 2612
[61] Yang H, Zhang T, Zhu H, Zhang M, Wu W and Du M 2016 International Journal of Hydrogen Energy 42 1912
[62] Fu Q, Yang L, Wang W, Han A, Huang J, Du P, Fan Z, Zhang J and Xiang B 2015 Adv. Mater. 27 4732
[63] Huang J, Wang W, Fu Q, Yang L, Zhang K, Zhang J and Xiang B 2016 Nanotechnology 27 13LT01
[64] Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U, Li H, Wu X, Wang Y, Jiang J, Pan A, Huang Y, Yu R and Duan X 2015 Nano Lett. 16 264
[65] Chen Y, Xi J, Dumcenco D O, Liu Z, Suenaga K, Wang D, Shuai Z, Huang Y and Xie L 2013 Acs Nano 7 4610
[66] Azizi A, Wang Y, Lin Z, Wang K, Terrones M, Crespi V and Alem N 2016 Microscopy and Microanalysis 22 1548
[67] Chen Y, Wen W, Zhu Y, Mao N, Feng Q, Zhang M, Hsu H, Zhang J, Huang Y and Xie L 2016 Nanotechnology 27 445705
[68] Yao J, Zheng Z and Yang G W 2016 ACS Applied Materials & Interfaces 42 20872
[69] Chandrasekar H and Nath D N 2015 Mater. Res. Express 2 095007
[70] Lin Z, Thee M T, Elías A L, Feng S, Zhou C, Fujisawa K, Perea-Lopez N, Carozo V, Terrones H and Terrones M 2014 APL Mater. 2 092514
[71] Kim J S, Moran S T, Nayak A P, Pedahzur S, Ruiz I, Ponce G, Rodriguez D, Henny J, Liu J, Lin J and Akinwandeet D 2016 2D Mater 3 025003
[72] Yoshida S, Kobayashi Y, Sakurada R, Mori S, Miyata Y, Mogi H, Koyama T, Takeuchi O and Shigekawa H 2015 Sci. Rep. 5 14808
[73] Wang L, Sofer Z, Luxa J and Pumera M 2015 Adv. Mater. Interf. 2
[74] He J, He D, Wang Y and Zhao H 2015 Opt. Express 23 33370
[75] Xi J, Zhao T, Wang D and Shuai Z 2013 J. Phys. Chem. Lett. 5 285
[76] Li X, Puretzky A A, Sang X, K C S, Tian M, Ceballos F, Mahjouri-Samani M, Wang K, Unocic R R, Zhao H, Duscher G, Cooper V R, Rouleau C M, Geohegan D B and Xiao K 2016 Adv. Funct. Mater.
[77] Li X, Lin M W and Puretzky A A 2016 J. Mater. Res. 31 923
[78] Zhang M, Wu J, Zhu Y, Dumcenco D O, Hong J, Mao N, Deng S, Chen Y, Yang Y, Jin C, Chaki S H, Huang Y S, Zhang J and Xie L 2014 ACS Nano 8 7130
[79] Tongay S, Narang D S, Kang J, Fan W, Ko C, Luce A V, Wang K X, Suh J, Patel K D, Pathak V M, Li J and Wu J 2014 Appl. Phys. Lett. 104 012101
[80] Zhang C, KC S, Nie Y, Liang C, Vandenberghe W G, Longo R C, Zheng Y, Kong F, Hong S, Wallace R M and Cho K 2016 ACS Nano 10 7370
[81] Duerloo K A N and Reed E J 2015 ACS Nano 10 289
[82] Yu P, Lin J, Sun L, Le Q L, Yu X, Gao G, Hsu C H, Wu D, Chang T R, Zeng Q, Liu F, Wang Q J, Jeng H T, Lin H, Trampert A, Shen Z, Suenaga K and Liu Z 2016 Adv. Mater. 29 1603991
[83] Liu S, Yuan X, Wang P, Chen Z G, Tang L, Zhang E, Zhang C, Liu Y, Wang W, Liu C, Chen C, Zou J, Hu W and Xiu F 2015 ACS Nano 9 8592
[84] Jung C S, Shojaei F, Park K, Oh J, Im H, Jang D, Park J and Kang K 2015 ACS Nano 9 9585
[85] Zhong X, Zhou W, Zhou Y, Zhou F, Liu C, Yin Y, Peng Y and Tang D 2016 RSC Adv. 6 60862
[86] Liu F, Zheng S, Chaturvedi A, Zólyomi V, Zhou J, Fu Q, Zhu C, Yu P, Zeng Q, Drummond N D and Fan H J 2016 Nanoscale 8 5826
[87] Tan T L, Ng M F and Eda G 2016 The Journal of Physical Chemistry C 120 2501
[88] Li B, Huang L, Zhong M, Huo N, Li Y, Yang S, Fan C, Yang J, Hu W, Wei Z and Li J 2015 ACS Nano 9 1257
[89] Dong S, Liu X, Li X, Kanzyuba V, Yoo T, Rouvimov S, Vishwanath S, Xing H G, Jena D, Dobrowolska M and Furdyna J K 2016 APL Mater. 4 032601
[90] Zhao X, Dai X, Xia C, Wang T and Peng Y 2015 Solid State Commun. 25 1
[91] \cCakir D, Sahin H and Peeters F M 2014 Physical Chemistry Chemical Physics 16 16771
[92] Liu X, Zhao X, Ma X, Wu N, Xin Q and Wang T 2016 Physica E 87 6
[93] Westover R D, Atkins R A, Ditto J J and Johnson D C 2014 Chem. Mater. 26 3443
[94] Li Z, Xiao Y, Gong Y, Wang Z, Kang Y, Zu, Ajayan P M, Nordlander P and Fang Z 2015 ACS Nano. 9 10158
[95] Yu Y, Ji Z, Zu S, Du B, Kang Y, Li Z, Zhou Z, Shi K and Fang Z 2016 Adv. Funct. Mater. 26 6394
[96] Li Z, Ye R, Feng R, Kang Y, Zhu X, Tour J M and Fang Z 2015 Adv. Mater. 27 5235
[1] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[2] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[3] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[4] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[5] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[6] Formation of L10-FeNi hard magnetic material from FeNi-based amorphous alloys
Yaocen Wang(汪姚岑), Ziyan Hao(郝梓焱), Yan Zhang(张岩), Xiaoyu Liang(梁晓宇), Xiaojun Bai(白晓军), and Chongde Cao(曹崇德). Chin. Phys. B, 2022, 31(4): 046301.
[7] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[10] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[11] Heating rate effects for the melting transition of Pt-Ag-Au nanoalloys
Hüseyin Yıldırım and Ali Kemal Garip. Chin. Phys. B, 2021, 30(10): 108201.
[12] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[13] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[14] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[15] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
No Suggested Reading articles found!