Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 026501    DOI: 10.1088/1674-1056/26/2/026501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Anomalous low-temperature heat capacity in antiperovskite compounds

Xin-Ge Guo(郭新格)1,2, Jian-Chao Lin(林建超)1, Peng Tong(童鹏)1, Shuai Lin(蔺帅)1, Cheng Yang(杨骋)1, Wen-Jian Lu(鲁文建)1, Wen-Hai Song(宋文海)1, Yu-Ping Sun(孙玉平)1,3,4
1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China;
4 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  

The low-temperature heat capacities are studied for antiperovskite compounds AXM3 (A=Al, Ga, Cu, Ag, Sn, X=C, N, M=Mn, Fe, Co). A large peak in (C-γT)/T3 versus T is observed for each of a total of 18 compounds investigated, indicating an existence of low-energy phonon mode unexpected by Debye T3 law. Such a peak is insensitive to the external magnetic field up to 80 kOe (1 Oe=79.5775 A·m-1). For compounds with smaller lattice constant, the peak shifts towards higher temperatures with a reduction of peak height. This abnormal peak in (C-γT)/T3 versus T of antiperovskite compound may result from the strongly dispersive acoustic branch due to the heavier A atoms and the optical-like mode from the dynamic rotation of XM6 octahedron. Such a low-energy phonon mode may not contribute negatively to the normal thermal expansion in AXM3 compounds, while it is usually concomitant with negative thermal expansion in open-structure material (e.g., ZrW2O8, ScF3).

Keywords:  low-temperature heat capacity      low-energy phonon modes      antiperovskite compound      negative thermal expansion  
Received:  19 September 2016      Revised:  04 November 2016      Accepted manuscript online: 
PACS:  65.40.Ba (Heat capacity)  
  65.40.De (Thermal expansion; thermomechanical effects)  
  75.20.En (Metals and alloys)  
Fund: 

Project supported by the National Key Basic Research Program of China (Grant Nos. 2011CBA00111) and the National Natural Science Foundation of China (Grant Nos. 51322105, U1632158, 51301165, and 51301167).

Corresponding Authors:  Peng Tong     E-mail:  tongpeng@issp.ac.cn

Cite this article: 

Xin-Ge Guo(郭新格), Jian-Chao Lin(林建超), Peng Tong(童鹏), Shuai Lin(蔺帅), Cheng Yang(杨骋), Wen-Jian Lu(鲁文建), Wen-Hai Song(宋文海), Yu-Ping Sun(孙玉平) Anomalous low-temperature heat capacity in antiperovskite compounds 2017 Chin. Phys. B 26 026501

[1] Kittel C 2005 Introduction to Solid State Physics, 8th edn (New York: Wiley) pp. 112-117
[2] Gopal E S R 1996 Specific Heats at Low Temperatures (New York: Plenum Press) pp. 55-80
[3] Pohl R O 1981 Amorphous Solids: Low Temperature Properties (Berlin: Springer) pp. 27-52
[4] Malinovsky V K, Novikov V N, Parshin P P, Sokolov A P and Zemlyanov M G 1990 Europhys. Lett. 11 43
[5] Bermejoa F J, Criadob A and Martinezc J L 1994 Phys. Lett. A 195 236
[6] Dove M T, Harris M J, Hannon A C, Parker J M, Swainson I P and Gambhir M 1997 Phys. Rev. Lett. 78 1070
[7] Lubchenko V and Wolynes P G 2003 Proc. Natl. Acad. Sci. USA 100 1515
[8] Shintani H and Tanaka H 2008 Nat. Mater. 7 870
[9] Chumakov A I, Monaco G, Monaco A, Crichton W A, Bosak A, Rüffer R, Meyer A, Kargl F, Comez L, Fioretto D, Giefers H, Roitsch S, Wortmann G, Manghnani M H, Hushur A, Williams Q, Balogh J, Parli'nski K, Jochym P and Píekarz P 2011 Phys. Rev. Lett. 106 225501
[10] Ramirez A P and Kowach G R 1998 Phys. Rev. Lett. 80 4903
[11] Ramirez A P, Batlogg B, Aeppli G, Cava R J, Rietman E, Goldman A and Shirane G 1987 Phys. Rev. B 35 8833
[12] Beyermann W P, Hundley M F and Thompson J D 1992 Phys. Rev. Lett. 68 2046
[13] Melot B C, Tackett R, O'Brien J, Hector A L, Lawes G, Seshadri R and Ramirez A P 2009 Phys. Rev. B 79 224111
[14] Safarik D J, Schwarz R B and Hundley M F 2006 Phys. Rev. Lett. 96 195902
[15] David W I F, Evans J S O and Sleight A W 1999 Europhys. Lett. 46 661
[16] Hancock J N, Turpen C, Schlesinger Z, Kowach G R and Ramirez A P 2004 Phys. Rev. Lett. 93 225501
[17] Li C W, Tang X L, Muñoz J A, Keith B J, Tracy S J, Abernathy D L and Fultz B 2011 Phys. Rev. Lett. 107 195504
[18] Liu Y M, Wang Z H, Wu M Y, Sun Q, Chao M J and Jia Y 2015 Comput. Mater. Sci. 107 157
[19] Takenaka K and Takagi H 2005 Appl. Phys. Lett. 87 261902
[20] Huang R J, Li L F, Cai F S, Xu X D and Qian L H 2008 Appl. Phys. Lett. 93 081902
[21] Chu L H, Wang C, Sun Y, Li M C, Wan Z P, Wang Y, Dou S Y and Chu Y 2015 Chin. Phys. Lett. 32 047501
[22] Yu H M, Lewis L H and Moodenbaugh A R 2003 J. Appl. Phys. 93 10128
[23] Tohei T, Wada H and Kanomata T 2004 J. Magn. Magn. Mater. 272 E585
[24] Wang B S, Tong P, Sun Y P, Luo X, Zhu X B, Li G, Zhu X D, Zhang S B, Yang Z R, Song W H and Dai J M 2009 Europhys. Lett. 85 47004
[25] Matsunami D, Fujita A, Takenaka K and Kano M 2015 Nat. Mater. 14 73
[26] Chi E O, Kim W S and Hur N H 2001 Solid State Commun. 120 307
[27] Takenaka K, Ozawa A, Shibayama T, Kaneko N, Oe T and Urano C 2011 Appl. Phys. Lett. 98 022103
[28] Lin J C, Wang B S, Tong P, Lin S, Lu W J, Zhu X B, Yang Z R, Song W H, Dai J M and Sun Y P 2011 Scr. Mater. 65 452
[29] Tong P, Wang B S and Sun Y P 2013 Chin. Phys. B 22 067501
[30] Ding L, Wang C, Chu L H, Na Y Y and Yan J 2011 Acta Phys. Sin. 60 097507 (in Chinese)
[31] Takenaka T, Ichigo M, Hamada T, Ozawa A, Shibayama T, Inagaki T and Asano K 2014 Sci. Technol. Adv. Mater. 15 015009
[32] Gurevich V L, Parshin D A and Schober H R 2005 Phys. Rev. B 71 014209
[33] Hong L, Begen B, Kisliuk A, Alba-Simionesco C, Novikov V N and Sokolov A P 2008 Phys. Rev. B 78 134201
[34] Lin S, Wang B S, Tong P, Hu L, Huang Y N, Lu W J, Zhao B C, Song W H and Sun Y P 2013 J. Appl. Phys. 113 103906
[35] Lin S, Wang B S, Hu X B, Lin J C, Huang Y N, Jian H B, Lu W J, Zhao B C, Tong P, Song W H and Sun Y P 2012 J. Magn. Magn. Mater. 324 3267
[36] Lin S, Wang B S, Lin J C, Huang Y N, Hu X B, Lu W J, Zhao B C, Tong P, Song W H and Sun Y P 2011 J. Appl. Phys. 110 083914
[37] Lin J C, Wang B S, Lin S, Tong P, Lu W J, Zhang L, Song W H and Sun Y P 2012 J. Appl. Phys. 111 043905
[38] Lin J C, Tong P, Lin S, Wang B S, Song W H and Sun Y P 2014 J. Appl. Phys. 116 213912
[39] Yang C, Tong P, Lin J C, Lin S, Cui D P, Wang B S, Song W H, Lu W J and Sun Y P 2014 J. Appl. Phys. 116 033902
[40] Lin S, Tong P, Wang B S, Lin J C, Huang Y N and Sun Y P 2014 Inorg. Chem. 53 3709
[41] Wang B S 2011 "Study on the Physical Properties of Manganese based Antiperovskite carbon compounds (Ga, Al, Sn)CMn3", Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[42] Lin J C, Tong P, Tong W, Lin S, Wang B S, Song W H, Zou Y M and Sun Y P 2015 Appl. Phys. Lett. 106 082405
[43] Guo X G, Lin J C, Tong P, Wang M, Wu Y, Yang C, Song B, Lin S, Song W H and Sun Y P 2015 Appl. Phys. Lett. 107 202406
[44] Jha P K 2005 Phys. Rev. B 72 214502
[45] Tütüncü H M and Srivastava G P 2014 Physica C 507 10
[46] Iikubo S, Kodama K, Takenaka K, Takagi H, Takigawa M and Shamoto S 2008 Phys. Rev. Lett. 101 205901
[47] Iikubo S, Kodama K, Takenaka K, Takagi H and Shamoto S 2010 J. Phys. Conf. Ser. 251 012014
[48] Tong P, Louca D, King G, Llobet A, Lin J C and Sun Y P 2013 Appl. Phys. Lett. 102 041908
[49] Chumakov A I, Monaco G, Fontana A, et al. 2014 Phys. Rev. Lett. 112 025502
[50] Taraskin S N, Loh Y L, Natarajan G and Elliott S R 2001 Phys. Rev. Lett. 86 1255
[51] Tachibana M, Yamazaki J, Kawaji H and Atake T 2005 Phys. Rev. B 72 064434
[52] Ravindran T R, Arora A K and Mary T A 2000 Phys. Rev. Lett. 84 3879
[53] Mittal R, Chaplot S L, Schober H and Mary T A 2001 Phys. Rev. Lett. 86 4692
[54] Romao C P, Morelock C R, Johnson M B, Zwanziger J W, Wilkinson A P and White M A 2015 J. Mater. Sci. 50 3409
[55] Qu B Y, He H Y and Pan B C 2012 Adv. Cond. Matter. Phys. 2012 Article ID 913168
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Isotropic negative thermal expansion and its mechanism in tetracyanidoborate salt CuB(CN)4
Chunyan Wang(王春艳), Qilong Gao(高其龙), Andrea Sanson, and Yu Jia(贾瑜). Chin. Phys. B, 2022, 31(6): 066501.
[3] Zero thermal expansion in metal-organic framework with imidazole dicarboxylate ligands
Qilong Gao(高其龙), Yixin Jiao(焦怡馨), and Gang Li(李纲). Chin. Phys. B, 2022, 31(4): 046501.
[4] Near-zero thermal expansion in β-CuZnV2O7 in a large temperature range
Yaguang Hao(郝亚光), Hengli Xie(谢恒立), Gaojie Zeng(曾高杰), Huanli Yuan(袁焕丽), Yangming Hu(胡杨明), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Xiao Ren(任霄), and Er-Jun Liang(梁二军). Chin. Phys. B, 2022, 31(4): 046502.
[5] Effects of W6+ occupying Sc3+ on the structure, vibration, and thermal expansion properties of scandium tungstate
Dongxia Chen(陈冬霞), Qiang Sun(孙强), Zhanjun Yu(于占军), Mingyu Li(李明玉), Juan Guo(郭娟), Mingju Chao(晁明举), and Erjun Liang(梁二军). Chin. Phys. B, 2021, 30(6): 066501.
[6] Negative thermal expansion in NbF3 and NbOF2: A comparative theoretical study
Mingyue Zhang(张明月), Chunyan Wang(王春艳), Yinuo Zhang(张一诺), Qilong Gao(高其龙), and Yu Jia(贾瑜). Chin. Phys. B, 2021, 30(5): 056501.
[7] Negative thermal expansion of Ca2RuO4 with oxygen vacancies
Sen Xu(徐森), Yangming Hu(胡杨明), Yuan Liang(梁源), Chenfei Shi(史晨飞), Yuling Su(苏玉玲), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军). Chin. Phys. B, 2020, 29(8): 086501.
[8] Imaging the diffusion pathway of Al3+ ion in NASICON-type (Al0.2Zr0.8)20/19Nb(PO4)3 as electrolyte for rechargeable solid-state Al batteries
Jie Wang(王捷), Chun-Wen Sun(孙春文), Yu-Dong Gong(巩玉栋), Huai-Ruo Zhang(张怀若), Jose Antonio Alonso, María Teresa Fernández-Díaz, Zhong-Lin Wang(王中林), John B Goodenough. Chin. Phys. B, 2018, 27(12): 128201.
[9] Effects of Al particles and thin layer on thermal expansion and conductivity of Al-Y2Mo3O12 cermets
Xian-Sheng Liu(刘献省), Xiang-Hong Ge(葛向红), Er-Jun Liang(梁二军), Wei-Feng Zhang(张伟风). Chin. Phys. B, 2017, 26(11): 118101.
[10] Negative thermal expansion and photoluminescence in solid solution (HfSc)0.83W2.25P0.83O12δ
Yuan Liang(梁源), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Bao-He Yuan(袁保合), Juan Guo(郭娟), Qian Sun(孙强), Er-Jun Liang(梁二军). Chin. Phys. B, 2017, 26(10): 106501.
[11] Zero and controllable thermal expansion in HfMgMo3-xWxO12
Tao Li(李涛), Xian-Sheng Liu(刘献省), Yong-Guang Cheng(程永光), Xiang-Hong Ge(葛向红), Meng-Di Zhang(张孟迪), Hong Lian(连虹), Ying Zhang(张莹), Er-Jun Liang(梁二军), Yu-Xiao Li(李玉晓). Chin. Phys. B, 2017, 26(1): 016501.
[12] Phase transition and thermal expansion property of Cr2-xZr0.5xMg0.5xMo3O12 solid solution
Song Wen-Bo (宋文博), Wang Jun-Qiao (王俊俏), Li Zhi-Yuan (李志远), Liu Xian-Sheng (刘献省), Yuan Bao-He (袁保合), Liang Er-Jun (梁二军). Chin. Phys. B, 2014, 23(6): 066501.
[13] Mn-based antiperovskite functional materials: Review of research
Tong Peng (童鹏), Wang Bo-Sen (王铂森), Sun Yu-Ping (孙玉平). Chin. Phys. B, 2013, 22(6): 067501.
[14] Crystal structure and thermochemical properties of phase change materials bis(1-octylammonium) tetrachlorochromate
Lu Dong-Fei (卢冬飞), Di You-Ying (邸友莹), He Dong-Hua (何东华 ). Chin. Phys. B, 2012, 21(8): 080702.
[15] The phase transition, hygroscopicity, and thermal expansion properties of Yb2-xAlxMo3O12
Li Qiu-Jie(李求杰), Yuan Bao-He(袁保合), Song Wen-Bo(宋文博), Liang Er-Jun(梁二军), and Yuan Bin(袁斌) . Chin. Phys. B, 2012, 21(4): 046501.
No Suggested Reading articles found!