Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128701    DOI: 10.1088/1674-1056/26/12/128701
Special Issue: SPECIAL TOPIC — Soft matter and biological physics
SPECIAL TOPIC—Soft matter and biological physics Prev   Next  

Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides

Li Deng(邓礼)1, Yurong Zhao(赵玉荣)1, Peng Zhou(周鹏)1, Hai Xu(徐海)1, Yanting Wang(王延颋)2,3
1. Center for Bioengineering and Biotechnology, China University of Petroleum(East China), Qingdao 266580 China;
2. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences(CAS), Beijing 100190 China;
3. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

Nanostructures self-assembled by cross-β peptides with ordered structures and advantageous mechanical properties have many potential applications in biomaterials and nanotechnologies. Quantifying the intra-and inter-molecular driving forces for peptide self-assembly at the atomistic level is essential for understanding the formation mechanism and nanomechanics of various morphologies of self-assembled peptides. We investigate the thermodynamics of the intra-and inter-sheet structure formations in the self-assembly process of cross-β peptide KⅢIK by means of steered molecular dynamics simulation combined with umbrella sampling. It is found that the mechanical properties of the intra-and inter-sheet structures are highly anisotropic with their intermolecular bond stiffness at the temperature of 300 K being 5.58 N/m and 0.32 N/m, respectively. This mechanical anisotropy comes from the fact that the intra-sheet structure is stabilized by enthalpy but the inter-sheet structure is stabilized by entropy. Moreover, the formation process of KⅢIK intra-sheet structure is cooperatively driven by the van der Waals (VDW) interaction between the hydrophobic side chains and the electrostatic interaction between the hydrophilic backbones, but that of the inter-sheet structure is primarily driven by the VDW interaction between the hydrophobic side chains. Although only peptide KⅢIK is studied, the qualitative conclusions on the formation mechanism should also apply to other cross-β peptides.

Keywords:  molecular dynamics simulation      peptide self-assembly      intermolecular force      thermodynamics  
Received:  10 August 2017      Revised:  18 September 2017      Accepted manuscript online: 
PACS:  87.14.ef (Peptides)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB932804), the National Natural Science Foundation of China (Grant Nos. 11421063, 11647601, 11504431, and 21503275), the Scientific Research Foundation of China University of Petroleum (East China) for Young Scholar (Grant Y1304073). Yanting Wang also thanks the financial support through the CAS Biophysics Interdisciplinary Innovation Team Project (Grant No. 2060299).

Corresponding Authors:  Yanting Wang     E-mail:  wangyt@itp.ac.cn

Cite this article: 

Li Deng(邓礼), Yurong Zhao(赵玉荣), Peng Zhou(周鹏), Hai Xu(徐海), Yanting Wang(王延颋) Anisotropic formation mechanism and nanomechanics for the self-assembly process of cross-β peptides 2017 Chin. Phys. B 26 128701

[1] Yan X H, Cui Y, He Q, et al. 2008 Chem. Eur. J. 14 5974
[2] Nyrkova I, Semenov A N, Aggeli A, et al. 2000 Eur. Phys. J. B 17 499
[3] Deechongkit S, Powers E T, You S L, et al. 2005 J. Am. Chem. Soc. 127 8562
[4] Scanlon S and Aggeli A 2008 Nano Today 3 22
[5] Cui H, Muraoka T, Cheetham A G, et al. 2009 Nano Lett. 9 945
[6] Adamcik J, Berquand A and Mezzenga R 2011 Appl. Phys. Lett. 98 193701
[7] Knowles T P J and Buehler M J 2011 Nat. Nanotechnol. 6 469
[8] Zhang S G 2003 Nat. Biotechnol. 21 1171
[9] Ulijn R V and Smith A M 2008 Chem. Soc. Rev. 37 664
[10] Zhao X B, Pan F, Xu H, et al. 2010 Chem. Soc. Rev. 39 3480
[11] Hauser C A E, Maurer-Stroh S and Martins I C 2014 Chem. Soc. Rev. 43 5326
[12] Knowles T P J, Vendruscolo M and Dobson C M 2014 Nat. Rev. Mol. Cell Bio. 15 496
[13] Liang Y, Pingali S V, Jogalekar A S, et al. 2008 Biochemistry-us. 47 10018
[14] Mehta A K, Lu K, Childers W S, et al. 2008 J. Am. Chem. Soc. 130 9829
[15] Castelletto V, Hamley I W, Cenker C, et al. 2010 J. Phys. Chem. B 114 8002
[16] Adamcik J and Mezzenga R 2011 Soft Matter 7 5437
[17] Castelletto V, Hamley I W, Harris P J F, et al. 2009 J. Phys. Chem. B 113 9978
[18] Hamley I W, Nutt D R, Brown G D, et al. 2010 J. Phys. Chem. B 114 940
[19] Jordens S, Adamcik J, Amar-Yuli I, et al. 2011 Biomacromolecules 12 187
[20] Smith J F, Knowles T P J, Dobson C M, et al. 2006 Proc. Natl. Acad. Sci. USA 103 15806
[21] Adamcik J, Jung J M, Flakowski J, et al. 2010 Nat. Nanotechnol. 5 423
[22] Adamcik J and Mezzenga R 2012 Curr. Opin. Colloid In. 17 369
[23] Aggeli A, Nyrkova I A, Bell M, et al. 2001 Proc. Natl. Acad. Sci. USA 98 11857
[24] Nelson R, Sawaya M R, Balbirnie M, et al. 2005 Nature 435 773
[25] Sawaya M R, Sambashivan S, Nelson R, et al. 2007 Nature 447 453
[26] Fitzpatrick A W P, Debelouchina G T, Bayro M J, et al. 2013 Proc. Natl. Acad. Sci. USA 110 5468
[27] Fitzpatrick A W P, Vanacore G M and Zewail A H 2015 Proc. Natl. Acad. Sci. USA 112 3380
[28] Knowles T P, Fitzpatrick A W, Meehan S, et al. 2007 Science 318 1900
[29] Li Y, Sun Y, Qin M, et al. 2015 Nanoscale 7 5638
[30] Nyrkova I, Semenov A N, Aggeli A, et al. 2000 Eur. Phys. J. B 17 481
[31] Deng L, Zhao Y R, Xu H, et al. 2015 Appl. Phys. Lett. 107 043701
[32] Zhou P, Deng L, Wang Y T, et al. 2016 J. Colloid. Interf. Sci. 464 219
[33] Sotomayor M and Schulten K 2007 Science 316 1144
[34] Paparcone R and Buehler M J 2011 Biomaterials 32 3367
[35] Ndlovu H, Ashcroft A E, Radford S E, et al. 2012 Biophys. J. 102 587
[36] Choi B, Yoon G, Lee S W, et al. 2015 Phys. Chem. Chem. Phys. 17 1379
[37] Xu C J, Li D C, Cheng Y, et al. 2015 Acta Mech. Sin. 31 416
[38] Jarzynski C 1997 Phys. Rev. Lett. 78 2690
[39] Patey G N and Valleau J P 1973 Chem. Phys. Lett. 21 297
[40] Torrie G M and Valleau J P 1974 Chem. Phys. Lett. 28 578
[41] Vijayaraj R, Van Damme S, Bultinck P, et al. 2012 J. Phys. Chem. B 116 9922
[42] Yu T, Lee O S and Schatz G C 2013 J. Phys. Chem. A 117 7453
[43] Lemkul J A and Bevan D R 2010 J. Phys. Chem. B 114 1652
[44] Zhao Y R, Wang J Q, Deng L, et al. 2013 Langmuir. 29 13457
[45] Deng L, Zhou P, Zhao Y R, et al. 2014 J. Phys. Chem. B 118 12501
[46] DeLano W L 2002 The PyMOL molecular graphics system (San Carlos:Scientific)
[47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[48] Van der Spoel D, Lindahl E, Hess B, et al. 2005 J. Comput. Chem. 26 1701
[49] Jorgensen W L and Maxwell D S 1996 J. Am. Chem. Soc. 118 11225
[50] Jorgensen W L and Tirado-Rives J 2005 Proc. Natl. Acad. Sci. USA 102 6665
[51] Jorgensen W L, William L, Chandrasekhar J, et al. 1983 J. Chem. Phys. 79 926
[52] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[53] Essmann U, Perera L, Berkowitz M L, et al. 1995 J. Chem. Phys. 103 8577
[54] Nose S 1984 Mol. Phys. 52 255
[55] Hoover W G 1985 Phys. Rev. A 31 1695
[56] Parrinello M and Rahman A 1981 J. Appl. Phys. 52 7182
[57] Kumar S, Bouzida D, Swendsen R H, et al. 1992 J. Comb. Chem. 13 1011
[58] Mondal J and Yethiraj A 2011 J. Phys. Chem. Lett. 2 2391
[59] Klimov D K, Straub J E, Thirumalai D 2004 Proc. Natl. Acad. Sci. USA 101 14760
[60] Li W F, Qin M, Tie Z X, et al. 2011 Phys. Rev. E 84 041933
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[5] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[6] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[7] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[8] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[9] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[10] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[11] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[12] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[13] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[14] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[15] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
No Suggested Reading articles found!