Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116103    DOI: 10.1088/1674-1056/26/11/116103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ab-initio investigation of AGeO3 (A=Ca, Sr) compounds via Tran–Blaha-modified Becke–Johnson exchange potential

Rasul Bakhsh Behram1,2, M A Iqbal3, Muhammad Rashid4, M Atif Sattar5, Asif Mahmood6, Shahid M Ramay7
1. Physics Department, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan;
2. Allama Iqbal Open University, Regional Campus, Lahore 54590, Pakistan;
3. Department of Physics, School of Science, University of Management and Technology, Lahore 54590, Pakistan;
4. Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000, Pakistan;
5. Department of Physics Simulation Lab, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
6. Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11451, Saudi Arabia;
7. Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
Abstract  We employ ab-initio calculations to analyze the mechanical, electronic, optical and also thermoelectric properties associated with AGeO3 (A=Ca, Sr) compounds. The full-potential linearized augmented plane wave (FP-LAPW) technique in the generalized gradient approximation (GGA-PBEsol) and the lately designed Tran-Blaha-modified Becke-Johnson exchange potential are utilized to examine the mechanical and optoelectronic properties respectively. To explore the thermoelectric quality, we use the semi-classical Boltzmann transport theory. The particular structural stabilities regarding AGeO3 (A=Ca, Sr) materials are validated simply by computations from the elastic constants. The energy band structural framework and the density of states are displayed to indicate indirect bandgap under ambient conditions. The particular computed optical attributes that reveal prospective optoelectronic applications are usually elucidated simply by studying ε1(0) and also Eg, which can be connected by means of Penn's design. The optical details uncover the actual suitability to power ranging products. Finally, the BoltzTraP code is executed to analyze the actual thermoelectric properties, which usually presents that the increase of internal temperatures can enhance the electric conductivity, thermal conductivity and also the power factor, whilst Seebeck coefficient decreases. Therefore, the studied materials will also be ideal for thermoelectric products to understand helpful option for alternative energy resources.
Keywords:  semiconductors      elastic properties      optical properties      thermal properties  
Received:  30 May 2017      Revised:  31 July 2017      Accepted manuscript online: 
PACS:  61.82.Fk (Semiconductors)  
  87.19.rd (Elastic properties)  
  91.60.Mk (Optical properties)  
Fund: Project supported by the Deanship of Scientific Research at King Saud University, Saudi Arabia (Grant No. RGP-VPP-311).
Corresponding Authors:  Muhammad Rashid, Shahid M Ramay     E-mail:  muhammad.rashid@comsats.edu.pk;rapakistana@yahoo.com

Cite this article: 

Rasul Bakhsh Behram, M A Iqbal, Muhammad Rashid, M Atif Sattar, Asif Mahmood, Shahid M Ramay Ab-initio investigation of AGeO3 (A=Ca, Sr) compounds via Tran–Blaha-modified Becke–Johnson exchange potential 2017 Chin. Phys. B 26 116103

[1] Sarma D, Shanthi N, Barman S, Hamada N, Sawada H and Terakura K 1995 Phys. Rev. Lett. 75 1126
[2] Kim J Y and Grishin A M 2006 Thin Solid Films 515 2615
[3] Hao L J, Zhang D and Feng S H 2012 Feng Funct. Mater. 10 43
[4] Zhong W, Chak-Tong A and Du Y W 2013 Chin. Phys. B 22 057501
[5] Zhu X H, Zhang T, Cheng Y, Chen X R and Cai L C 2013 Physica B:Condens. Matter 411 81
[6] Liu L G and Ringwood A 1975 Earth Planet. Sci. Lett. 28 209
[7] Liebermann R C 1976 Earth Planet. Sci. Lett. 29 326
[8] Sasaki S, Prewitt C T, Bass J D and Schulze W 1987 Acta Crystallogr C 43 1668
[9] Tanaka M, Shishido T, Horiuchi H, Toyota N, Shindo D and Fukuda T 1993 J. Alloys Compd. 192 87
[10] Zerr A, Diegeler A and Boehler R 1998 Science 281 243
[11] Sasaki S, Prewitt C T and Liebermann R C 1983 Am. Mineral. 68 1189
[12] Redfern S A 1996 J. Phys.:Condens. Matter 8 8267
[13] Liu X, Wang Y, Liebermann R, Maniar P and Navrotsky A 1991 Phys. Chem. Miner. 18 224
[14] Durben D J, Wolf G H and McMillan P F 1991 Phys. Chem. Miner. 18 215
[15] Andrault D and Poirier J 1991 Phys. Chem. Miner. 18 91
[16] Lu R and Hofmeister A M 1994 Phys. Chem. Miner. 21 78
[17] Liu W and Li B 2007 Phys. Rev. B 75 024107
[18] Grzechnik A, Hubert H, McMillan P and Petuskey W 1997 Integr. Ferroelectr. 15 191
[19] Yamaguchi O, Sasaki H, Sugiura K and Shimizu K 1983 Ceram. Int. 9 75
[20] Fang C M and Ahuja R 2006 Phys. Earth Planet. Inter. 57 1
[21] Henriques J, Caetano E, Freire V, da Costa J and Albuquerque E L 2007 J. Solid State Chem. 180 974
[22] Gudelli V K, Kanchana V, Appalakondaiah S, Vaitheeswaran G and Valsakumar M 2013 J. Phys. Chem. C 117 21120
[23] Lu X and Morelli D T 2013 Phys. Chem. Chem. Phys. 15 5762
[24] Madsen G K, Singh D J and BoltzTra P 2006 Comput. Phys. Commun. 175 67
[25] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2k:An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
[26] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[27] Becke A D and Johnson E R 2006 J. Chem. Phys. 124 221101
[28] Murnaghan F 1944 Proc. Natl. Acad. Sci. 30 244
[29] Reshak A H and Jamal M 2012 J. Alloys Compd. 543 147
[30] Hassan F E H and Akbarzadeh H 2006 Comput. Mater. Sci. 38 362
[31] Khenata R, Bouhemadou A, Sahnoun M, Reshak A H, Baltache H and Rabah M 2006 Comput. Mater. Sci. 38 29
[32] Bouhemadou A, Khenata R, Kharoubi M, Seddik T, Reshak A H and Al-Douri Y 2009 Comput. Mater. Sci. 45 474
[33] Monir M E A, Baltache H, Khenata R, Murtaza G, Azam S, Bouhemadou A, Al-Douri Y, Omran S B and Ali R 2015 J. Magn. Magn. Mater. 378 41
[34] Nye J F 1985 Physical Properties of Crystals:Their Representation by Tensors and Matrices(Oxford:Oxford University Press)
[35] Jamal M, Asadabadi S J, Ahmad I and Aliabad H R 2014 Comput. Mater. Sci. 95 592
[36] Tvergaard V and Hutchinson J W 1988 J. Am. Ceram. Soc. 71 157
[37] Hill R 1952 Proc. Phys. Soc. London 65 349
[38] Voigt W 1910 Lehrbuch der Kristall Physik Teubner(Leipzig) (reprinted(1928) with an additional Appendix) (New York:Johnson Reprint)
[39] Reuss A 1929 J. Appl. Math. Mech. 9 49
[40] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[41] Peng F, Chen D, Fu H and Cheng X 2009 Phys. Status Solidi 246 71
[42] Fu H, Li D, Peng F, Gao T and Cheng X 2008 Comput. Mater. Sci. 44 774
[43] Zhang W B, Zeng F and Tang B Y 2015 Chin. Phys. B 24 097103
[44] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[45] Marius G 2010 Kramers-Kronig Relations in The Physics of Semiconductors(Berlin, Heidelberg:Springer) pp. 775-776
[46] Wang S, Du Y L and Liao W H 2017 Chin. Phys. B 26 017806
[47] Kulwinder K and Ranjan K 2016 Chin. Phys. B 25 026402
[1] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[2] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[3] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[4] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[5] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[6] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[7] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[8] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[9] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[10] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[11] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[12] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[13] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[14] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[15] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
No Suggested Reading articles found!