Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 103103    DOI: 10.1088/1674-1056/26/10/103103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons

Lu-Ting Huang(黄露婷), Zheng Chen(陈铮), Yong-Xin Wang(王永欣), Yan-Li Lu(卢艳丽)
State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Zigzag graphene nanoribbon (ZGNR) is a promising candidate for next-generation spintronic devices. Development of the field requires potential systems with variable and adjustable electromagnetic properties. Here we show a detailed investigation of ZGNR decorated with edge topological defects (ED-ZGNR) synthesized in laboratory by Ruffieux in 2015[Pascal Ruffieux, Shiyong Wang, Bo Yang, et al. 2015 Nature 531 489]. The pristine ED-ZGNR in the ground state is an antiferromagnetic semiconductor, and the acquired band structure is significantly changed compared with that of perfect ZGNR. After doping heteroatoms on the edge, the breaking of degeneration of band structure makes the doped ribbon a half-semi-metal, and nonzero magnetic moments are induced. Our results indicate the tunable electronic and magnetic properties of ZGNR by deriving unique edge state from topological defect, which opens a new route to practical nano devices based on ZGNR.
Keywords:  graphene nanoribbons      topological defect      spin      edge  
Received:  11 May 2017      Revised:  30 June 2017      Accepted manuscript online: 
PACS:  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  31.15.ej (Spin-density functionals)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51474176, 51674205, 51575452, and 51475378).
Corresponding Authors:  Lu-Ting Huang     E-mail:  hlt0922@mail.nwpu.edu.cn

Cite this article: 

Lu-Ting Huang(黄露婷), Zheng Chen(陈铮), Yong-Xin Wang(王永欣), Yan-Li Lu(卢艳丽) First principle study of edge topological defect-modulated electronic and magnetic properties in zigzag graphene nanoribbons 2017 Chin. Phys. B 26 103103

[1] Mandal B, Sarkar S, Pramanik A and Sarkar P 2014 RSC Adv. 4 49946
[2] Baldoni M, Sgamellotti A and Mercuri F 2008 Chem. Phys. Lett. 464 202
[3] J. Bhattacharjee 2012 Chem. Phys. 137 094705
[4] Autes G and Yazyev O V 2013 Phys. Rev. B 87 3249
[5] Takazumi K, Susumu O, Kei K, Kota D, Kyoko N and Yoshiyuki M 2006 Phys. Rev. B 74 121412
[6] Lu P, Zhang Z H and Guo W L 2009 Phys. Lett. A 373 3354
[7] Hu T, Zhou J, Dong J M and Kawazoe Y 2012 Phys. Rev. B 86 125420
[8] Lin X Q and Ni J 2011 Phys. Rev. B 84 075461
[9] Zhang W X, He C, Li T and Gong S B 2015 RSC Adv. 5 33407
[10] Dai Q Q, Zhu Y F and Jiang Q 2013 Phys. Chem. C 117 4791
[11] Ruffieux P, Wang S Y, Yang B, Sánchez C, Liu J, Dienel T, Talirz L, Shinde P, Pignedoli C A, Passerone D, Dumslaff T, Feng X L, Müllen K and Fasel R 2015 Nature 531 489
[12] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[13] Rasolt M and Geldart D J W 1986 Phys. Rev. B 34 1325
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Kresse G and Furthmüller 1996 Phys. Rev. B 54 11169
[16] Kresse, G and Furthmuller 1996 Comput. Mater. Sci. 6 15
[17] Kresse G and Joubert 1999 Phys. Rev. B 59 1758
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Monkhorst H J and Jack J D 1976 Phys. Rev. B 13 5188
[20] Hou D, Wei J and Xie S 2010 Phys. Chem. 13 13202
[21] Cho D, Ko K C, Park H and Lee J Y 2015 Phys. Chem. C 119 10109
[22] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[23] Li S, Jiang Q and Yang G W 2010 Appl. Phys. Lett. 96 213101
[24] Liu Y, Chen Z, Tong L J, Zhang J and Sun D Q 2016 Comput. Mater. Sci. 117 279
[25] Gorjizadeh N, Farajian A A, Esfarjani K and Kawazoe Y 2008 Phys. Rev. B 78 155427
[26] Pruneda J M 2010 Phys. Rev. B 81 2149
[27] Rai H M, Jaiswal N K, Srivastava P and Kurchania R 2013 Comput. Theor. Nanosci. 10 368
[28] Rajca A 2003 Chem. Eur. J. 8 4834
[29] Cho D, Ko K. C and Lee J Y 2014 Phys. Chem. A 118 5112
[30] Nam Y, Cho D and Jin Y L 2016 Phys. Chem. C 120 11237
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[3] Strong spin frustration and magnetism in kagomé antiferromagnets LnCu3(OH)6Br3 (Ln = Nd, Sm, and Eu)
Jin-Qun Zhong(钟金群), Zhen-Wei Yu(余振伟), Xiao-Yu Yue(岳小宇), Yi-Yan Wang(王义炎), Hui Liang(梁慧), Yan Sun(孙燕), Dan-Dan Wu(吴丹丹), Zong-Ling Ding(丁宗玲), Jin Sun(孙进), Xue-Feng Sun(孙学峰), and Qiu-Ju Li(李秋菊). Chin. Phys. B, 2023, 32(4): 047505.
[4] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[5] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[6] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[7] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[8] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[9] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[10] Orbital torque of Cr-induced magnetization switching in perpendicularly magnetized Pt/Co/Pt/Cr heterostructures
Hongfei Xie(谢宏斐), Yuhan Chang(常宇晗), Xi Guo(郭玺), Jianrong Zhang(张健荣), Baoshan Cui(崔宝山), Yalu Zuo(左亚路), and Li Xi(席力). Chin. Phys. B, 2023, 32(3): 037502.
[11] Spin pumping by higher-order dipole-exchange spin-wave modes
Peng Wang(王鹏). Chin. Phys. B, 2023, 32(3): 037601.
[12] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[13] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[14] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[15] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
No Suggested Reading articles found!