Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088505    DOI: 10.1088/1674-1056/25/8/088505
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer

Ping Qin(秦萍)1, Wei-Dong Song(宋伟东)1, Wen-Xiao Hu(胡文晓)1, Yuan-Wen Zhang(张苑文)1, Chong-Zhen Zhang(张崇臻)1, Ru-Peng Wang(王汝鹏)1, Liang-Liang Zhao(赵亮亮)1, Chao Xia(夏超)1, Song-Yang Yuan(袁松洋)1, Yi-an Yin(尹以安)1,2, Shu-Ti Li(李述体)1,2, Shi-Chen Su(宿世臣)1,2
1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, South China Normal University, Guangzhou 510631, China;
2 Guangdong Engineering Research Center of Optoelectronic Functional Materials and Devices, Institute of Opto-electronic Materials and Technology, Guangzhou 510631, China
Abstract  We investigate the performances of the near-ultraviolet (about 350 nm-360 nm) light-emitting diodes (LEDs) each with specifically designed irregular sawtooth electron blocking layer (EBL) by using the APSYS simulation program. The internal quantum efficiencies (IQEs), light output powers, carrier concentrations in the quantum wells, energy-band diagrams, and electrostatic fields are analyzed carefully. The results indicate that the LEDs with composition-graded p-AlxGa1-xN irregular sawtooth EBLs have better performances than their counterparts with stationary component p-AlGaN EBLs. The improvements can be attributed to the improved polarization field in EBL and active region as well as the alleviation of band bending in the EBL/p-AlGaN interface, which results in less electron leakage and better hole injection efficiency, thus reducing efficiency droop and enhancing the radiative recombination rate.
Keywords:  AlGaN-based ultraviolet LEDs      irregular sawtooth EBL      APSYS simulation program      output power  
Received:  27 January 2016      Revised:  08 April 2016      Accepted manuscript online: 
PACS:  85.60.Jb (Light-emitting devices)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  78.20.Bh (Theory, models, and numerical simulation)  
  87.16.ad (Analytical theories)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474105 and 51172079), the Science and Technology Program of Guangdong Province, China (Grant Nos. 2015B090903078 and 2015B010105011), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13064), the Science and Technology Project of Guangzhou City, China (Grant No. 201607010246), and the Science and Technology Planning Project of Guangdong Province, China (Grant No. 2015A010105025).
Corresponding Authors:  Shi-Chen Su     E-mail:  shichensu@126.com

Cite this article: 

Ping Qin(秦萍), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Yuan-Wen Zhang(张苑文), Chong-Zhen Zhang(张崇臻), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Chao Xia(夏超), Song-Yang Yuan(袁松洋), Yi-an Yin(尹以安), Shu-Ti Li(李述体), Shi-Chen Su(宿世臣) Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer 2016 Chin. Phys. B 25 088505

[1] Asif K, Krishnan B and Tom K 2008 Nat. Photon. 2 77
[2] Li, J, Lin J Y and Jiang H X 2006 Appl. Phys. Lett. 88 171909
[3] Yu H P, Li S B, Zhang P, Wu S H, Wei X B, Wu Z M and Chen Z 2014 Chin. Phys. Lett. 31 108502
[4] Lu T P, Li S T, Zhang K, Liu C, Xiao G W, Zhou Y G, Zheng S W, Yin Y A, Wu L J, Wang H L and Yang X D 2011 Chin. Phys. B 20 098503
[5] Yin Y A, Wang N Y, Fan G H and Zhang Z H 2014 Superlattices Microstruct. 76 149
[6] Wu T, Feng Z H, Liu B, Xiong H, Zhang J B, Dai J N, Cai S J and Chen C Q 2013 Opt. Quantum Electron. 45 381
[7] Cyril P, Shinya, Tetsuhiko I, Takehiko F, Myunghee K, Yosuke N, Akira H, Masamichi I, Motoaki I, Satoshi K, Isamu A and Hiroshi A 2011 Phys. Stat. Sol. A 208 1594
[8] Hideki H, Katsushi A, Takashi K, Takao N and Koji I 2004 J. Appl. Phys. 43 L1241
[9] Yang G F, Xie F, Dong K X, Chen P, Xue J J, Zhi T, Tao T, Liu B, Xie Z L, Xiu X Q, Han P, Shi Y, Zhang R and Zheng Y D 2014 Physica E 62 55
[10] Gutt R, Passow T, Kunzer M, Pletschen W, Kirste L, Forghani K, Scholz F, Köhler K and Wagner J 2012 Appl. Phys. Express 5 032101 1882
[11] Ma L, Shen G D, Gao Z Y and Xu C 2015 Chin. Phys. B 24 097202
[12] Kenneth J V, Michael I, Stacia K, Steven P D and Shuji N 2009 Appl. Phys. Lett. 94 061116
[13] Wang C H, Chen J R, Chiu C H, Kuo H C, Li Y L, Lu T C and Wang S C 2010 IEEE Photon. Technol. Lett. 22 236
[14] Aurélien D and Michael J G 2010 Appl. Phys. Lett. 96 103504
[15] Monemar B and Sernelius B E 2007 Appl. Phys. Lett. 91 181103
[16] Han S H, Lee D Y, Lee S J, Cho C Y, Kwon M K, Lee S P, Noh D Y, Kim D J, Kim Y C and Park S J 2009 Appl. Phys. Lett. 94 231123
[17] Kuo Y K, Chang J Y, Tsai M C and Yen S H 2009 Appl. Phys. Lett. 95 011116
[18] Xia, C S, Li Z M S, Lu W, Zhang Z H, Sheng Y, Hu W D and Cheng L W 2012 J. Appl. Phys. 111 094503
[19] Jun Z, Wu T, Feng W, Weiyi Y, Hui X, Jiangnan D, Yanyan F, Zhihao W and Changqing C 2013 IEEE Photon. J. 5 1600310
[20] Hirayama H, Tsukada Y, Maeda T and Kamata N 2010 Appl. Phys. Express 3 031002
[21] Kuo Y K, Chang J Y and Tsai M C 2010 Opt. Lett. 35 3285
[22] Yen S H and Kuo Y K 2008 J. Appl. Phys. 103 103115
[23] Zhang Y Y, Zhu X L, Yin Y A and Ma J 2012 IEEE Electron Dev. Lett. 33 994
[24] Yen S H and Kuo Y K 2008 J. Appl. Phys. 103 103115
[25] Xia C S, Simon Li Z M, Li Z Q and Sheng Y 2013 Appl. Phys. Lett. 102 013507
[26] Fiorentini V, Bernardini F and Ambacher O 2002 Appl. Phys. Lett. 80 1204
[27] Chichibu S F, Abare A C, Minsky M S, Keller S, Fleischer S B, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P and Sota T 1998 Appl. Phys. Lett. 73 2006
[28] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[1] Influence of fin architectures on linearity characteristics of AlGaN/GaNFinFETs
Ting-Ting Liu(刘婷婷), Kai Zhang(张凯), Guang-Run Zhu(朱广润), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Xin-Xin Yu(郁鑫鑫), Tang-Sheng Chen(陈堂胜). Chin. Phys. B, 2018, 27(4): 047307.
[2] Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization
Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2017, 26(6): 060201.
[3] High power 2-μm room-temperature continuous-wave operation of GaSb-based strained quantum-well lasers
Xu Yun (徐云), Wang Yong-Bin (王永宾), Zhang Yu (张宇), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠). Chin. Phys. B, 2013, 22(9): 094208.
[4] The design and numerical analysis of tandem thermophotovoltaic cells
Yang Hao-Yu (杨皓宇), Liu Ren-Jun (刘仁俊), Wang Lian-Kai (王连锴), Lü You (吕游), Li Tian-Tian (李天天), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2013, 22(10): 108402.
No Suggested Reading articles found!