Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 088103    DOI: 10.1088/1674-1056/25/8/088103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced biocompatibility of ZnS:Mn quantum dots encapsulated with Aloe vera extract for therapeutic applications

Anilkumar M1, Bindu K R2,3, Sneha Saj A1, Anila E I2
1 Cell Culture Laboratory, Department of Botany, U C College, Aluva, Kerala, India-683102;
2 Optoelectronic and Nanomaterials'Research Laboratory, Department of Physics, U C College, Aluva, Kerala, India-683102;
3 Department of Physics, SSV College, Airapuram, Kerala, India-683556
Abstract  Toxicity of nanoparticles remains to be a major issue in their application to the biomedical field. Aloe vera (AV) is one of the most widely exploited medicinal plants that have a multitude of amazing properties in the field of medicine. Methanol extract of Aloe vera can be used as a novel stabilising agent for quantum dots to reduce toxicity. We report the synthesis, structural characterization, antibacterial activity and cytotoxicity studies of ZnS:Mn quantum dots synthesized by the colloidal precipitation method, using methanol extract of Aloe vera (AVME) as the capping agent. The ZnS:Mn quantum dots capped with AVME exhibit superior performances in biocompatibility and antibacterial activity compared with ZnS:Mn quantum dots without encapsulation.
Keywords:  quantum dot      transmission electron microscopy      biocompatibility  
Received:  17 February 2016      Revised:  26 March 2016      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  87.85.jj (Biocompatibility)  
Fund: Project supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.
Corresponding Authors:  Anila E I     E-mail:  anilaei@gmail.com

Cite this article: 

Anilkumar M, Bindu K R, Sneha Saj A, Anila E I Enhanced biocompatibility of ZnS:Mn quantum dots encapsulated with Aloe vera extract for therapeutic applications 2016 Chin. Phys. B 25 088103

[1] Wu X 2003 Nat. Biotechnol. 21 41
[2] Wang Z L, Kong X Y and Zuo J M 2003 Phys. Rev. Lett. 91 185502
[3] Ma C, Moore D, Li J and Wang Z 2003 Adv. Mater. 15 228
[4] Bredol M and Merikhi J 1998 J. Mater. Sci. 33 471
[5] Murugadoss G 2010 J. Lumin. 130 2207
[6] Padmavati N and Vijayaraghavan R 2008 Sci. Technol. Adv. Mater. 9 1468
[7] Nair S, Sasidharan A, Divyarani V V, Menon D, Nair S, Manzoor K and Raina S 2009 J. Mater. Med. 20 235
[8] Bindu K R and Anila E I 2015 J. Fluoresc. 25 795
[9] Agarry O O, Olaleye M T and Bello-Michel C O 2005 Afr. J. Biotechnol. 4 1413
[10] Ahmed S A, Gogal R M Jr and Walsh J E 1994 J. Immunol. Method 170 211
[11] Ungar T, Gubicza J, Ribarik B and Borbely A 2001 J. Appl. Cryst. 34 298
[12] Suryanarayana C and Grant Norton M 1998 X-ray diffraction A:Practical approach (New York/London:Plenum Press)
[13] Nelson J B and Riley D P 1945 Proc. Phys. Soc. 57 160
[14] Lawrence R, Tripathi P and Jeyakumar E 2009 Brazilian Journal of Microbiology 40 906
[15] Foster S 1999 Aloe vera:The succulent with skin soothing cell protecting properties (New York:Vantage Press) p. 623
[16] Okoko F J and Nwanade E E 2010 Continental J. Microbiology 4 44
[17] Agarwal S K, Singh S S, Verma S and Kumar S 2000 J. Ethnopharmacol. 72 43
[18] Habeeb F, Shakir E, Bradbury F, Cameron P, Taravati M R, Drummond A J, Gray A I and Ferro V A 2007 Methods 42 315
[19] Arosio B, Gagliano N, Fusaro L M, Parmeggiani L, Tagliabue J, Galetti P, De Castri D, Moscheni C and Annoni G 2000 Pharmacol. Toxicol. 87 229
[20] Acevedo-Duncan M, Russell C, Patel S and Patel R 2004 Int. J. Immunopharmacol. 4 1775
[21] Imanishi K 1993 Phytotherapy Res. 7 S 20-22
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
[15] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
No Suggested Reading articles found!