Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(8): 086202    DOI: 10.1088/1674-1056/25/8/086202
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations

Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛)
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  We conduct molecular dynamics simulations of the ejection process from a grooved Pb surface subjected to supported and unsupported shock waves with various shock-breakout pressures (PSB) inducing a solid-liquid phase transition upon shock or release. It is found that the total ejecta mass changing with PSB under a supported shock reveals a similar trend with that under an unsupported shock and the former is always less than the latter at the same PSB. The origin of such a discrepancy could be unraveled that for an unsupported shock, a larger velocity difference between the jet tip and its bottom at an early stage of jet formation results in more serious damage, and therefore a greater amount of ejected particles are produced. The cumulative areal density distributions also display the discrepancy. In addition, we discuss the difference of these simulated results compared to the experimental findings.
Keywords:  ejecta mass      total amount      shock wave profiles      jet      velocity difference  
Received:  03 February 2016      Revised:  22 March 2016      Accepted manuscript online: 
PACS:  62.20.M- (Structural failure of materials)  
  62.50.-p (High-pressure effects in solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11472254 and 11272006).
Corresponding Authors:  Guo-Wu Ren     E-mail:  guowu.ren@yahoo.com

Cite this article: 

Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛) Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations 2016 Chin. Phys. B 25 086202

[1] Asay J R, Mix L P and Perry F C 1976 Appl. Phys. Lett. 29 284
[2] Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L and Buttler W T 2007 J. Appl. Phys. 102 013522
[3] Zellner M B, Vogan McNei W, Gray G T III, Huerta D C, King N S P, Neal G E, Valentine S J, Payton J R, Rubin J, Stevens G D, Turley W D and Buttler W T 2008 J. Appl. Phys. 103 083521
[4] Zellner M B, Vogan McNeil W, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N, Stevens G D, Turley W D, Veeser L and Buttler W T 2008 J. Appl. Phys. 103 123502
[5] Zellner M B, Byers M, Dimonte G, Hammerberg J E, Germann T C, Rigg P A and Buttler W T 2009 DYMMAT 1 89
[6] Zellner M B, Dimonte G, Germann T C, Hammerberg J E, Rigg P A, Stevens G D, Turley W D and Buttler W T 2009 AIP Conf. Proc. 1195 1047
[7] Buttler W T, Oró D M, Prestona D L, Mikaeliana K O, Chernea F J, Hixsona R S, Mariama1 F G, Morrisa C, Stonea J B, Terronesa G and Tupaa D 2012 J. Fluid Mech. 703 60
[8] Chen Y T, Hu H B, Tang T G, Ren G W, Li Q Z, Wang R B and Buttler W T 2012 J. Appl. Phys. 111 053509
[9] de Rességuier T and Lescoute E 2014 J. Appl. Phys. 115 043525
[10] Monfared S K, Oró D M, Grover M, Hammerberg J E, LaLone B M, Pack C L, Schauer M M, Stevens G D, Stone J B, Turley W D and Buttler W T 2014 J. Appl. Phys. 116 063504
[11] Dimonte G, Terrones G, Cherne F J and Ramaprabhu P 2013 J. Appl. Phys. 113 024905
[12] Koller D D, Hixson R S, Gray III G T, Rigg P A, Addessio L B, Cerreta E K, Maestas J D and Yablinsky C A 2005 J. Appl. Phys. 98 103518
[13] Gray III G T, Bourne N K and Henrie B L 2007 J. Appl. Phys. 101 093507
[14] Holian B L 2004 Shock Waves 13 489
[15] Germann T C, Dimonte G, Hammerberg J E, Kadau K, Quenneiville J and Zeller M B 2009 DYMMAT 2009 1499
[16] Durand O and Soulard L 2012 J. Appl. Phys. 111 044901
[17] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 153501
[18] Durand O and Soulard L 2013 J. Appl. Phys. 114 194902
[19] Shao J L, Wang P and He A M 2014 J. Appl. Phys. 116 073501
[20] Ren G W, Chen Y T, Tang T G and Li Q Z 2014 J. Appl. Phys. 116 133507
[21] He A M, Wang P, Shao J L and Duan S Q 2014 Chin. Phys. B 23 047102
[22] Durand O and Soulard L 2015 J. Appl. Phys. 117 165903
[23] Plimpton S 1995 J. Comput. Phys. 117 1
[24] Zhou X W, Johnson R A and Wadley H N G 2004 Phys. Rev. B 69 144113
[25] Xiang M, Hu H, Chen J and Long Y 2013 Modelling Simul. Mater. Sci. Eng. 21 055005
[26] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[1] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[2] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
[3] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[4] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[5] SnO2/Co3O4 nanofibers using double jets electrospinning as low operating temperature gas sensor
Zhao Wang(王昭), Shu-Xing Fan(范树兴), and Wei Tang(唐伟). Chin. Phys. B, 2022, 31(2): 028101.
[6] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[7] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[8] Large eddy simulations of a triangular jet and its counterpart through a chamber
Xiu Xiao(肖秀), Guo-Chang Wang(王国昌), Min-Yi Xu(徐敏义), Jian-Chun Mi(米建春). Chin. Phys. B, 2020, 29(6): 064701.
[9] A numerical study of dynamics in thin hopper flow and granular jet
Meng-Ke Wang(王梦柯), Guang-Hui Yang(杨光辉), Sheng Zhang(张晟), Han-Jie Cai(蔡汉杰), Ping Lin(林平), Liang-Wen Chen(陈良文), Lei Yang(杨磊). Chin. Phys. B, 2020, 29(4): 048102.
[10] Non-equilibrium atomic simulation for Frenkel–Kontorova model with moving dislocation at finite temperature
Baiyili Liu(刘白伊郦) and Shaoqiang Tang(唐少强). Chin. Phys. B, 2020, 29(11): 110501.
[11] Supersonic boundary layer transition induced by self-sustaining dual jets
Qiang Liu(刘强), Zhenbing Luo(罗振兵), Xiong Deng(邓雄), Zhiyong Liu(刘志勇), Lin Wang(王林), Yan Zhou(周岩). Chin. Phys. B, 2020, 29(1): 014704.
[12] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[13] Shock oscillation in highly underexpanded jets
Xiao-Peng Li(李晓鹏), Rui Zhou(周蕊), Xiao-Ping Chen(陈小平), Xue-Jun Fan(范学军), Guo-Shan Xie(谢国山). Chin. Phys. B, 2018, 27(9): 094705.
[14] Sterilization of mycete attached on the unearthed silk fabrics by an atmospheric pressure plasma jet
Rui Zhang(张锐), Jin-song Yu(於劲松), Jun Huang(黄骏), Guang-liang Chen(陈光良), Xin Liu(刘欣), Wei Chen(陈维), Xing-quan Wang(王兴权), Chao-rong Li(李超荣). Chin. Phys. B, 2018, 27(5): 055207.
[15] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
No Suggested Reading articles found!