Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048201    DOI: 10.1088/1674-1056/25/4/048201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics

Naruemon Rueangkham1, Charin Modchang1,2,3
1 Biophysics Group, Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
2 Centre of Excellence in Mathematics, CHE, 328, Si Ayutthaya Road, Bangkok 10400, Thailand;
3 ThEP Center CHE, 328 Si Ayutthaya Road, Bangkok 10400, Thailand
Abstract  

Most biochemical processes in cells are usually modeled by reaction-diffusion (RD) equations. In these RD models, the diffusive process is assumed to be Gaussian. However, a growing number of studies have noted that intracellular diffusion is anomalous at some or all times, which may result from a crowded environment and chemical kinetics. This work aims to computationally study the effects of chemical reactions on the diffusive dynamics of RD systems by using both stochastic and deterministic algorithms. Numerical method to estimate the mean-square displacement (MSD) from a deterministic algorithm is also investigated. Our computational results show that anomalous diffusion can be solely due to chemical reactions. The chemical reactions alone can cause anomalous sub-diffusion in the RD system at some or all times. The time-dependent anomalous diffusion exponent is found to depend on many parameters, including chemical reaction rates, reaction orders, and chemical concentrations.

Keywords:  reaction-diffusion system      anomalous diffusion exponent      MCell  
Received:  10 October 2015      Revised:  10 December 2015      Accepted manuscript online: 
PACS:  82.39.Rt (Reactions in complex biological systems)  
  87.16.A- (Theory, modeling, and simulations)  
Fund: 

Project supported by the Thailand Research Fund and Mahidol University (Grant No. TRG5880157), the Thailand Center of Excellence in Physics (ThEP), CHE, Thailand, and the Development Promotion of Science and Technology.

Corresponding Authors:  Charin Modchang     E-mail:  charin.mod@mahidol.edu

Cite this article: 

Naruemon Rueangkham, Charin Modchang Computational analysis of the roles of biochemical reactions in anomalous diffusion dynamics 2016 Chin. Phys. B 25 048201

[1] Wu J and Berland K M 2008 Biophys. J. 95 2049
[2] Trovato F and Tozzini V 2014 Biophys. J. 107 2579
[3] Haugh J M 2009 Biophys. J. 97 435
[4] Gabso M, Neher E and Spira M E 1997 Neuron 18 473
[5] Wagner J and Keizer J 1994 Biophys. J. 67 447
[6] Saxton M J 2007 Biophys. J. 92 1178
[7] Regner B M, Vučinić D, Domnisoru C, Bartol T M, Hetzer M W, Tartakovsky D M and Sejnowski T J 2013 Biophys. J. 104 1652
[8] Salman H, Gil Y, Granek R and Elbaum M 2002 Chem. Phys. 284 389
[9] Capuani S, Palombo M, Gabrielli A, Orlandi A, Maraviglia B and Pastore F S 2013 Magn. Reson. Imaging 31 359
[10] Platani M, Goldberg I, Lamond A I and Swedlow J R 2002 Nat. Cell Biol. 4 502
[11] Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y, Barkai E and Garini Y 2009 Phys. Rev. Lett. 103 018102
[12] Daddysman M K and Fecko C J 2013 J. Phys. Chem. B 117 1241
[13] Henry B, Langlands T and Wearne S 2006 Phys. Rev. E. 74
[14] Nakano S I, Miyoshi D and Sugimoto N 2013 Chem. Rev. 114 2733
[15] Qin L and Li Q 2013 Chin. Phys. B 22 038701
[16] Lin F and Bao J D 2011 Chin. Phys. B 20 040502
[17] Qin S L and He Y 2014 Chin. Phys. B 23 110206
[18] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[19] Sokolov I M, Schmidt M and Sagués F 2006 Phys. Rev. E 73 031102
[20] Koszto?owicz T and Lewandowska K D 2014 Phys. Rev. E 90 032136
[21] Lucena L, Da Silva L, Evangelista L, Lenzi M, Rossato R and Lenzi E 2008 Chem. Phys. 344 90
[22] Yuste S and Lindenberg K 2002 Chem. Phys. 284 169
[23] Morgado M and Rebelo M 2015 J. Comput. Appl. Math. 275 216
[24] Saxton M J 1996 Biophys. J. 70 1250
[25] Mour?ao M, Kreitman D and Schnell S 2014 Phys. Chem. Chem. Phys. 16 4492
[26] Soula H, Caré B, Beslon G and Berry H 2013 Biophys. J. 105 2064
[27] Kerr R A, Bartol T M, Kaminsky B, Dittrich M, Chang J C, Baden S B, Sejnowski T J and Stiles J R 2008 SIAM. J. Sci. Comput. 30 3126
[28] Soh S, Byrska M, Kandere-Grzybowska K and Grzybowski B A 2010 Angew. Chem. Int. Ed. 49 4170
[29] Bai Y Q and Zhu X 2010 Chin. Phys. Lett. 27 048201
[30] Modchang C, Nadkarni S, Bartol T M, Triampo W, Sejnowski T J, Levine H and Rappel W J 2010 Phys. Biol. 7 026008
[31] Sagi Y, Brook M, Almog I and Davidson N 2012 Phys. Rev. Lett. 108
[32] Farrell J A, Zhang J, Jones M V, Deboy C A, Hoffman P N, Landman B A, Smith S A, Reich D S, Calabresi P A and van Zijl P C 2010 Magn. Reson. Med. 63 1323
[33] de Anna P, Le Borgne T, Dentz M, Bolster D and Davy P 2011 J. Chem. Phys. 135 174104
[34] Codling E A, Plank M J and Benhamou S 2008 J. R. Soc. Interf. 5 813
[35] Schmidt M, Sagués F and Sokolov I 2007 J. Phys.: Condens. Matter 19 065118
[1] Potential dynamic analysis of tumor suppressor p53 regulated by Wip1 protein
Nan Liu(刘楠), Dan-Ni Wang(王丹妮), Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), Lian-Gui Yang(杨联贵). Chin. Phys. B, 2020, 29(6): 068704.
[2] The birhythmicity increases the diversity of p53 oscillation induced by DNA damage
Dao-Guang Wang(王道光), Chun-Hong Zhou(周春红), Xiao-Peng Zhang(张小鹏). Chin. Phys. B, 2017, 26(12): 128709.
No Suggested Reading articles found!