Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048102    DOI: 10.1088/1674-1056/25/4/048102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君)
School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China
Abstract  As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g-1 at 2 mV/s compared to pristine PANI of 397 F·g-1.
Keywords:  graphene      composite sponge      supercapacitor electrode  
Received:  28 September 2015      Revised:  02 December 2015      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  72.80.Tm (Composite materials)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.
Corresponding Authors:  Zhen-Hua Wang     E-mail:  wzhua@hrbust.edu.cn

Cite this article: 

Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君) Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode 2016 Chin. Phys. B 25 048102

[1] Luo W G, Wang H F, Cai K M, Han W P, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 67202
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Bunch J S, Van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and McEuen P L 2007 Science 315 490
[4] Liu Y, Deng R J, Wang Z and Liu H T 2012 J. Mater. Chem. 22 13619
[5] Wang Y G, Li H Q and Xia Y Y 2006 Adv. Mater. 18 2619
[6] Yan J, Wei T, Fan Z J, Qian W Z, Zhang M L, Shen X D and Wei F 2010 J. Power Sources 195 3041
[7] Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M 2007 Adv. Funct. Mater. 17 3083
[8] Li L X, Song H H, Zhang Q C, Yao J Y, Chen X H 2009 J. Power Sources 187 268
[9] Wang H L, Hao Q L, Yang X J, Lu L D and Wang X 2010 Nanoscale 2 2164
[10] Yao J, Shen X P, Wang B, Liu H K and Wang G X 2009 Electrochem. Commun. 11 1849
[11] Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X and Chen Y 2009 Nano Res. 2 343
[12] Ning G Q, Li T Y, Yan J and Xu C G 2013 Carbon 54 241
[13] Wang H L, Hao Q L, Yang X J, Lu L D and Wang X 2010 ACS Appl. Mater. Inter. 2 821
[14] Yan X B, Chen J T, Yang J, Xue Q J and Miele P 2010 ACS Appl. Mater. Inter. 2 521
[15] Compton O C, Dikin D A, Putz K W, Brinson L C and Nguyen S T 2010 Adv. Mater. 22 892
[16] Daniela C M, Dmitry V K and Jacob M B 2010 ACS Nano. 8 4806
[17] Dong X C, Wang J X and Wang J 2012 Mater. Chem. Phys. 134 576
[18] Zhai Y P, Dou Y Q, Zhao D Y and Fulvio P F 2011 Adv. Mater. 23 4828
[19] Fei J B, Cui Y, Yan X H, Yang Y, Wang K W and Li J B 2009 ACS Nano 3 3714
[20] Wang H L, Hao Q L, Yang X J and Lu L D 2009 Electrochem. Commun. 11 1158
[21] Acevedo D F, Rivarola C R, Miras M C and Barbero C A 2011 Electrochim. Acta 56 3468
[22] Rozlívková Z, Trchová M and Exnerová M 2011 Synth. Met. 161 1122
[23] Laslau C, Zujovic Z and Travas-Sejdic J 2010 Prog. Polym. Sci. 35 1403
[24] An J W, Liu J H, Zhou Y C and Zhao H F 2012 J. Phys. Chem. 116 19699
[25] Ramanathan T, Fisher F T, Ruoff R S and Brinson L C 2005 Chem. Mater. 17 1290
[26] Wu Q, Xu Y X, Yao Z Y, Liu A R and Shi G Q 2010 ACS Nano 4 1963
[27] Lee Y M, Kim J H, Kang J S and Ha S Y 2000 Macromolecules 33 7431
[28] Zhang K, Zhang L L, Zhao X S and Wu J S 2010 Chem. Mater. 22 1392
[29] Wu T, Lin Y and Liao C 2005 Carbon 43 734
[30] Liu Y, Ma Y, Guang S Y, Xu H Y and Su X Y 2014 J. Mater. Chem. A 2 813
[31] Arico A S, Bruce P, Scrosati B, Tarascon J M and Schalkwijk W V 2005 Nat. Mater. 4 366
[32] Li C and Shi G Q 2012 Nanoscale 4 5549
[33] Li L, Song H, Zhang Q and Yao J, Chen X 2009 J. Power Sources 187 268
[34] Khomenko V, Frackowiak E and Béguin F 2005 Electrochim. Acta 50 2499
[35] Zhang L L and Zhao X S 2009 Chem. Soc. Rev. 38 2520
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[4] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[5] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[6] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[7] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[8] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[13] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[14] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[15] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
No Suggested Reading articles found!