Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 127701    DOI: 10.1088/1674-1056/25/12/127701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator

Ji-Ying Hu(胡吉英)1, Zhao-Hui Li(李朝晖)1, Yang Sun(孙阳)1,3, Qi-Hu Li(李启虎)2
1. Department of Electronics, Peking University, Beijing 100871, China;
2. Advanced Technology Institute, Peking University, Beijing 100871, China;
3. College of Science, Beijing Forestry University, Beijing 100083, China
Abstract  

Shear-mode piezoelectric materials have been widely used to shunt the damping of vibrations where utilizing surface or interface shear stresses. The thick-shear mode (TSM) elastic constant and the mechanical loss factor can change correspondingly when piezoelectric materials are shunted to different electrical circuits. This phenomenon makes it possible to control the performance of a shear-mode piezoelectric damping system through designing the shunt circuit. However, due to the difficulties in directly measuring the TSM elastic constant and the mechanical loss factor of piezoelectric materials, the relationships between those parameters and the shunt circuits have rarely been investigated. In this paper, a coupling TSM electro-mechanical resonant system is proposed to indirectly measure the variations of the TSM elastic constant and the mechanical loss factor of piezoelectric materials. The main idea is to transform the variations of the TSM elastic constant and the mechanical loss factor into the changes of the easily observed resonant frequency and electrical quality factor of the coupling electro-mechanical resonator. Based on this model, the formular relationships are set up theoretically with Mason equivalent circuit method and they are validated with finite element (FE) analyses. Finally, a prototype of the coupling electro-mechanical resonator is fabricated with two shear-mode PZT5A plates to investigate the TSM elastic constants and the mechanical loss factors of different circuit-shunted cases of the piezoelectric plate. Both the resonant frequency shifts and the bandwidth changes observed in experiments are in good consistence with the theoretical and FE analyses under the same shunt conditions. The proposed coupling resonator and the obtained relationships are validated with but not limited to PZT5A.

Keywords:  piezoelectric materials      shunt damping      shear mode      elastic constant  
Received:  05 July 2016      Revised:  02 September 2016      Accepted manuscript online: 
PACS:  77.90.+k (Other topics in dielectrics, piezoelectrics, and ferroelectrics and their properties)  
  62.20.-x (Mechanical properties of solids)  
  62.20.de (Elastic moduli)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: 

Project supported by the National Defense Foundation of China (Grant No. 9149A12050414JW02180).

Corresponding Authors:  Zhao-Hui Li     E-mail:  lizhcat@pku.edu.cn

Cite this article: 

Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎) Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator 2016 Chin. Phys. B 25 127701

[1] Forward R L 1979 Appl. Opt. 18 690
[2] Hagood N W and von Flotow A 1991 J. Sound Vib. 146 243
[3] Lallart M, Lefeuvre É, Richard C and Guyomar D 2008 Sensor. Actuat. A-Phys. 143 377
[4] Shen H, Qiu J, Ji H, Zhu K, Balsi M, Giorgio I and Isola F D 2010 Sensor. Actuat. A-Phys. 161 245
[5] Becker J, Fein O, Maess M and Gaul L 2006 Comput. Struct. 84 2340
[6] Thomas O, Ducarne J and Deü J F 2012 Smart Mater. Struct. 21(1) 015008
[7] Ducarne J, Thomas O and Deu J F 2012 J. Sound Vib. 331 3286
[8] Sun Y, Li Z H, Huang A G and Li Q H 2015 J. Sound Vib. 355 19
[9] Zhang J M, Chang W, Varadan V K and Varadan V V 2001 Smart Mater. Struct. 10 414
[10] Ahmadian M and Jeric K M 2001 J. Sound Vib. 243 347
[11] Guyomar D, Richard T and Richard C 2008 J. Intell. Mater. Syst. Struct. 19 791
[12] Kim J S, Jeong U C, Seo J H, Kim Y D, Lee O D and Oh J E 2015 Sensor. Actuat. A-Phys. 233 330
[13] Kim J S and Lee J K 2002 J. Acoust. Soc. Am. 112 990
[14] Chen S B, Wen J H, Wang G and Wen X S 2013 Chin. Phys. B 22 074301
[15] Corrêa de Godoy T C and Areias Trindade M A 2011 J. Sound Vib. 330 194
[16] Benjeddou A and Ranger J A 2006 Comput. Struct. 84 1415
[17] Trindade M A and Benjeddou A 2008 Comput. Struct. 86 859
[18] Karim Y and Blanze C 2014 Comput. Struct. 138 73
[19] Santos Heinsten F L dos and Trindade M A 2011 J. Brazilian Soc. Mech. Sci. Eng. 33 287
[20] Benjeddou A 2001 J. Vib. Control 7 565
[21] Orescanin M and Insana M F 2010 IEEE T. Ultrason. Ferr. 57 1358
[22] Fang S X, Tang D Y, Chen Z M, Zhang H and Liu Y L 2015 Chin. Phys. B 24 027802
[23] Zhang S J, Jiang W H, Richard J, Meyer Jr, Li F, Luo J and Cao W W 2011 J. Appl. Phys.110 064106
[24] Behling C, Lucklum R and Hauptmann P 1999 IEEE T. Ultrason. Ferr.46 1431
[25] Herrscher M, Ziegler C and Johannsmann D 2007 J. Appl. Phys. 101 114909
[26] Johannsmann D 2001 J. Appl. Phys. 89 6356
[27] Wolff O and Johannsmann D 2000 J. Appl. Phys. 87 4182
[28] Granstaff V E and Martin S J 1994 J. Appl. Phys. 75 1319
[29] Sun Y, Li Z H and Li Q H 2014 Sensor. Actuat. A-Phys. 218 105
[30] Luan G D, Zhang J D and Wang R Q 2005 Piezoelectric Transducers and Arrays (Beijing:Peking University Press) pp. 103-126
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[3] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[4] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[5] Composition effect on elastic properties of model NiCo-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026102.
[6] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[7] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[8] First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥). Chin. Phys. B, 2018, 27(1): 016201.
[9] Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)
Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军). Chin. Phys. B, 2018, 27(1): 017103.
[10] First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound
Belmorsli Bekki, Kadda Amara, Mohammed El Keurti. Chin. Phys. B, 2017, 26(7): 076201.
[11] First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2
Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六). Chin. Phys. B, 2017, 26(6): 067103.
[12] Effects of pressure on structural, electronic, and mechanical properties of α, β, and γ uranium
Hui-Jie Zhang(张慧杰), Shi-Na Li(李世娜), Jing-Jing Zheng(郑晶晶), Wei-Dong Li(李卫东), Bao-Tian Wang(王保田). Chin. Phys. B, 2017, 26(6): 066104.
[13] Singular variation property of elastic constants of piezoelectric ceramics shunted to negative capacitance
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Qi-Hu Li(李启虎). Chin. Phys. B, 2017, 26(12): 127702.
[14] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[15] First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics
Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2016, 25(10): 107104.
No Suggested Reading articles found!