Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 108504    DOI: 10.1088/1674-1056/25/10/108504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photoresponse and trap characteristics of transparent AZO-gated AlGaN/GaN HEMT

Chong Wang(王冲)1,2, Meng-Di Zhao(赵梦荻)1,2, Yun-Long He(何云龙)1,2, Xue-Feng Zheng(郑雪峰)1,2, Kun Zhang(张坤)1,2, Xiao-Xiao Wei(魏晓晓)1,2, Wei Mao(毛维)1,2, Xiao-Hua Ma(马晓华)1,2, Jin-Cheng Zhang(张进成)1,2, Yue Hao(郝跃)1,2
1 Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Xi'an 710071, China;
2 The School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  AZO-gated and Ni/Au-gated AlGaN/GaN HEMTs are fabricated successfully, and an excellent transparency of AZO-gated electrode is achieved. After a negative gate bias stress acts on two kinds of the devices, their photoresponse characteristics are investigated by using laser sources with different wavelengths. The effect of photoresponse on AZO-gated electrode device is more obvious than on Ni/Au-gated electrodes device. The electrons are trapped in the AlGaN barrier of AZO-gated HEMT after it has experienced negative gate bias stress, and then the electrons can be excited effectively after it has been illuminated by the light with certain wavelengths. Furthermore, the trap state density DT and the time constant τT of the AZO-gated Schottky contact are extracted by fitting the measured parallel conductance in a frequency range from 10 kHz to 10 MHz. The constants of the trap range from about 0.35 μs to 20.35 μs, and the trap state density increased from 1.93×1013 eV-1·cm-2 at an energy of 0.33 eV to 3.07×1011 eV-1·cm-2 at an energy of 0.40 eV. Moreover, the capacitance and conductance measurements are used to characterize the trapping effects under different illumination conditions in AZO-gated HEMTs. Reduced deep trap states' density is confirmed under the illumination of short wavelength light.
Keywords:  AlGaN/GaN      HEMT      AZO      trap  
Received:  25 March 2016      Revised:  24 May 2016      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61574110, 61574112, and 61106106).
Corresponding Authors:  Chong Wang     E-mail:  wangchong@hotmail.com

Cite this article: 

Chong Wang(王冲), Meng-Di Zhao(赵梦荻), Yun-Long He(何云龙), Xue-Feng Zheng(郑雪峰), Kun Zhang(张坤), Xiao-Xiao Wei(魏晓晓), Wei Mao(毛维), Xiao-Hua Ma(马晓华), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Photoresponse and trap characteristics of transparent AZO-gated AlGaN/GaN HEMT 2016 Chin. Phys. B 25 108504

[1] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron. Dev. Lett. 32 626
[2] Facchetti A and Marks T J 2010 Transparent Electronics: From Synthesis to Applications (Chichester: Wiley) p. 6287
[3] Lo C F, Xi Y Y, Liu L, Pearton S J, Doré S, Hsu C H, Dabiran A M, Chow P P and Fan R 2013 Sensors and Actuators B 176 708
[4] Cai J, Han D D, Geng Y F, Wang W, Wang L L, Zhang S D and Wang Y 2013 IEEE Trans. Electron. Dev. 60 2432
[5] Wang C, He Y L, Zheng X F, Ma X H, Zhang J C and Hao Y 2013 Chin. Phys. B 22 068503
[6] Wang C, Zhang K, He Y L, Zheng X F, Ma X H, Zhang J C and Hao Y 2014 Chin. Phys. Lett. 31 128501
[7] Pei Y, Vampola K J, Chen Z, Chu R, DenBaars S P and Mishra U K 2009 IEEE Electron. Dev. Lett. 30 439
[8] Lee C S, Chou B Y and Hsu W C 2011 IEEE Trans. Electron. Dev. 58 725
[9] Tapajna M, Mishra U K and Kuball M 2010 Appl. Phys. Lett. 97 023503
[10] Zhao S L, Zhang K, Ha W, Chen Y H, Zhang P, Zhang J C, Ma X H and Hao Y 2013 Appl. Phys. Lett. 103 212106
[11] He Y L, Li P X, Wang C, Li X D, Zhao S L, Mi M H, Pei J Q, Zhang J C, Ma X H and Hao Y 2015 Appl. Phys. Lett. 107 063501
[12] Hori Y, Yatabe Z and Hashizume T 2013 J. Appl. Phys. 114 244503
[13] Roy S, Midya K, Duttagupta S P and Ramakrishnan D 2014 J. Appl. Phys. 116 124507
[14] Mizutani T, Ohno Y, Akita M, Kishimoto S and Maezawa K 2002 Phys. Stat. Sol. A 194 447
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[10] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[11] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[12] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[13] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[14] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[15] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
No Suggested Reading articles found!