Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 107104    DOI: 10.1088/1674-1056/25/10/107104
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics

Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚)
Department of Physics, Tsinghai University, Beijing 100084, China
Abstract  The effects of boron and carbon on the structural, elastic, and electronic properties of both Ni solution and Ni3Al intermetallics are investigated using first-principles calculations. The results agree well with theoretical and experimental data from previous studies and are analyzed based on the density of states and charge density. It is found that both boron and carbon are inclined to occupy the Ni-rich interstices in Ni3Al, which gives rise to a cubic interstitial phase. In addition, the interstitial boron and carbon have different effects on the elastic moduli of Ni and Ni3Al. The calculation results for the G/B and Poisson's ratios further demonstrate that interstitial boron and carbon can both reduce the brittleness of Ni, thereby increasing its ductility. Meanwhile, boron can also enhance the ductility of the Ni3Al while carbon hardly has an effect on its brittleness or ductility.
Keywords:  Ni3Al      first-principles calculation      elastic constant      elastic modulus  
Received:  08 April 2016      Revised:  06 July 2016      Accepted manuscript online: 
PACS:  71.20.Lp (Intermetallic compounds)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  62.20.D- (Elasticity)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402).
Corresponding Authors:  Chong-Yu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Meng-Li Huang(黄梦礼), Chong-Yu Wang(王崇愚) First-principles studies of effects of interstitial boron and carbon on the structural, elastic, and electronic properties of Ni solution and Ni3Al intermetallics 2016 Chin. Phys. B 25 107104

[1] Reed R 2006 The Superalloys: Fundamentals and Applications (New York: Cambridge University Press)
[2] Pollock T M and Tin S 2006 J. Propul. Power 22 361
[3] Bhadeshia H K D H www.msm.cam.ac.uk/phase-trans/2003/Superalloys/superalloys.html
[2016]
[4] Wu Y X, Li X Y and Wang Y M 2007 Acta Mater. 55 4845
[5] Kayser F X and Stassis C 1981 Phys. Status Solidi A 64 335
[6] Prikhodko S V, Yang H, Ardell A J, Carnes J D and Isaak D G 1999 Metall. Mater. Trans. A 30 2403
[7] Kim D E, Shang S L and Liu Z K 2010 Intermetallics 18 1163
[8] Mehl M J, Klein B M and Papaconstantopoulos D A 1994 First principles calculations of elastic properties of metals (London: Wiley) Vol. 1, pp.195-209
[9] Kim D E, Shang S L and Liu Z K 2009 Comput. Mater. Sci. 47 254
[10] Wang Y J and Wang C Y 2009 MRS Proceedings, November 30-December 4, 2009, Boston, USA, Vol. 1224
[11] Wu X X and Wang C Y 2015 J. Phys.: Condens. Matter 27 295401
[12] Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
[13] Osburn J E, Mehl M J and Klein B M 1991 Phys. Rev. B 43 1805
[14] Iotova D, Kioussis N and Lim S P 1996 Phys. Rev. B 54 14413
[15] Wang Y J and Wang C Y 2009 Chin. Phys. B 18 4339
[16] Wang Y J and Wang C Y 2008 Mater. Sci. Eng. A 490 242
[17] Wang Y J and Wang C Y 2009 Philos. Mag. 89 2935
[18] Wang Y J and Wang C Y 2009 Scr. Mater. 61 197
[19] Aoki K and Izumi O 1979 J. Jpn. Inst. Met. 43 1190
[20] Liu C T, White C L and Horton J A 1985 Acta Metall. 33 213
[21] Taub A I, Huang S C and Chang K M 1984 Metall. Mater. Trans. A 15 399
[22] White C L and Choudhury A 1987 MRS Symposium Proceedings, December 1-6, 1986, Boston, USA, p. 427
[23] Schulson E M, Weihs T P, Baker I, Frost H J and Horton J A 1986 Acta Metall. 34 1395
[24] Baker I, Schulson E M and Michael J R 1988 Philos. Mag. B 57 379
[25] George E P, Liu C T and Pope D P 1993 Scr. Metall. Mater. 28 857
[26] Huang S C, Taub A I and Chang K M 1984 Acta Metall. 32 1703
[27] Mott N F and Nabarro F R N 1948 Report on the Conference on the Strength of Solids, 1947, London, UK, p. 1
[28] Heredia F E and Pope D P 1988 MRS Proceedings, November 28-December 3, 1988, Boston, USA, Vol.133, p. 287
[29] Heredia F E and Pope D P 1991 Acta Metall. Mater. 39 2017
[30] Sun S N, Kioussis N and Ciftan M 1996 Phys. Rev. B 54 3074
[31] Huang S C, Briant C L, Chang K M, Taub A I and Hall E L 1986 J. Mater. Res. 1 60
[32] Tong P, Zhu X B, Zhao B C, Ang R, Song W H and Sun Y P 2006 Physica B 371 63
[33] Janas A and Olejnik E 2011 Arch. Foundry Eng. 11 65
[34] Caplan D, Hussey R J, Sproule G I and Graham M J 1980 Oxid. Met. 14 279
[35] Šob M, Friák M, Legut D, Fiala J and Vitek V 2004 Mater. Sci. Eng. A 387 148
[36] Ogata S, Umeno Y and Kohyama M 2009 Modell. Simul. Mater. Sci. Eng. 17 013001
[37] Yao Q, Xing H and Sun J 2006 Appl. Phys. Lett. 89 1906
[38] Sanyal S, Waghmare U V, Subramanian P R and Gigliotti M F 2010 Scripta Mater. 63 391
[39] Chen K, Zhao L R and John S T 2004 Mater. Sci. Eng. A 365 80
[40] Chen K, Zhao L R and John S T 2003 Mater. Sci. Eng. A 360 197
[41] Peng P, Zhou D W, Liu J S, Yang R and Hu Z Q 2006 Mater. Sci. Eng. A 416 169
[42] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[43] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[44] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[45] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[46] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[49] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[50] Zoroddu A, Bernardini F, Ruggerone P and Fiorentini V 2001 Phys. Rev. B 64 045208
[51] Erhart P, Albe K and Klein A 2006 Phys. Rev. B 73 205203
[52] Ravi C and Wolverton C 2004 Acta Mater. 52 4213
[53] Wolverton C 2001 Acta Mater. 49 3129
[54] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D 2001 Phys. Rev. B 63 224106
[55] Yin M T and Cohen M L 1982 Phys. Rev. B 26 5668
[56] Wang S Q and Ye H Q 2003 J. Phys.: Condens. Matter 15 5307
[57] Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner)
[58] Hill R 1952 Proc. Phys. Soc. London 65 349
[59] Reuss A 1929 Z. Angew. Math. Mech. 9 49
[60] Fahrmann M, Hermann W, Fahrmann E, Boegli A, Pollock T M and Sockel H G 1999 Mater. Sci. Eng. A 260 212
[61] Wang Y, Curtarolo S, Jiang C, Arroyave R, Wang T, Ceder G, Chen L Q and Liu Z K 2004 Calphad 28 79
[62] Kittel C 2005 Introduction to Sold State Physics (New York: John Wiley & Sons)
[63] Yoo M H 1987 Acta Metall. 35 1559
[64] Sun S N, Kioussis N, Lim S P, Gonis A and Gourdin W H 1995 Phys. Rev. B 52 14421
[65] Wang F H, Wang C Y and Yang J L 1996 J. Phys.: Condens. Matter 8 5527
[66] Hu Q M, Yang R, Xu D S, Hao Y L, Li D and Wu W T 2003 Phys. Rev. B 67 224203
[67] Epstein S G and Carlson O N 1965 Acta Metall. 13 487
[68] Du J, Wen B, Melnik R and Kawazoe Y 2014 Intermetallics 54 110
[69] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[70] Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
[71] Pugh S F 1954 Phil. Mag. 45 823
[72] Chung D H and Buessem W R 1967 J. Appl. Phys. 38 2010
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[11] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[12] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[13] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[14] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[15] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
No Suggested Reading articles found!