Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 105206    DOI: 10.1088/1674-1056/25/10/105206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges

Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  

The effect of the dielectric ring on the plasma radial uniformity is numerically investigated in the practical 450-mm capacitively coupled plasma reactor by a two-dimensional self-consistent fluid model. The simulations were performed for N2/Ar discharges at the pressure of 300 Pa, and the frequency of 13.56 MHz. In the practical plasma treatment process, the wafer is always surrounded by a dielectric ring, which is less studied. In this paper, the plasma characteristics are systematically investigated by changing the properties of the dielectric ring, i.e., the relative permittivity, the thickness and the length. The results indicate that the plasma parameters strongly depend on the properties of the dielectric ring. As the ratio of the thickness to the relative permittivity of the dielectric ring increases, the electric field at the wafer edge becomes weaker due to the stronger surface charging effect. This gives rise to the lower N2+ ion density, flux and N atom density at the wafer edge. Thus the homogeneous plasma density is obtained by selecting optimal dielectric ring relative permittivity and thickness. In addition, we also find that the length of the dielectric ring should be as short as possible to avoid the discontinuity of the dielectric materials, and thus obtain the large area uniform plasma.

Keywords:  capacitive N2/Ar discharge      fluid simulation      dielectric materials      plasma radial uniformity     
Received:  11 May 2016      Editor Suggest Published:  05 October 2016
PACS:  52.50.Qt (Plasma heating by radio-frequency fields; ICR, ICP, helicons)  
  52.65.-y (Plasma simulation)  
  52.25.Mq (Dielectric properties)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11335004 and 11405019) and the Important National Science and Technology Specific Project of China (Grant No. 2011ZX02403-001).

Corresponding Authors:  You-Nian Wang     E-mail:  ynwang@dlut.edu.cn

Cite this article: 

Ying-Shuang Liang, Yu-Ru Zhang, You-Nian Wang Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges 2016 Chin. Phys. B 25 105206

[1] Chabert P and Braithwaite N 2011 Physics of Ratio-Frequency Plasmas (Cambridge University Press)
[2] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn. (New York: Wiley-Interscience)
[3] Yang Y and Kushner M J 2010 J. Appl. Phys. 108 113306
[4] Liang Y S, Liu Y X, Zhang Y R and Wang Y N 2015 J. Appl. Phys. 117 083301
[5] Liu Y X, Liang Y S, Wen D Q, Bi Z H and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025013
[6] Xu X, Zhao S X, Zhang Y R and Wang Y N 2010 J. Appl. Phys. 108 043308
[7] Bi Z H, Dai Z L, Zhang Y R, Liu D P and Wang Y N 2013 Plasma Sources Sci. Technol. 22 055007
[8] Michna T and Ellingboe A R 2011 Cur. Appl. Phys. 11 S9
[9] Gao F, Liu W, Zhao S X, Zhang Y R, Sun C S and Wang Y N 2013 Chin. Phys. B 22 115205
[10] Wang Y H, Liu W, Zhang Y R, Sun C S and Wang Y N 2015 Chin. Phys. B 24 095203
[11] Xu H J, Zhao S X, Gao F, Zhang Y R, Li X C and Wang Y N 2015 Chin. Phys. B 24 115201
[12] Liu Y X, Zhang Q Z, Liu J, Song Y H, Bogaerts A and Wang Y N 2013 Plasma Sources Sci. Technol. 22 025012
[13] Zhang Q Z, Liu Y X, Jiang W, Bogaerts A and Wang Y N 2013 Plasma Sources Sci. Technol. 22 025014
[14] Zhang Q Z, Wang Y N and Bogaerts A 2014 J. Appl. Phys. 115 223302
[15] Wen D Q, Zhang Q Z, Jiang W, Song Y H, Bogaerts A and Wang Y N 2014 J. Appl. Phys. 115 233303
[16] Liu W, Wen D Q, Zhao S X, Gao F and Wang Y N 2015 Plasma Sources Sci. Technol. 24 025035
[17] Chanson R, Rhallabi A, Fernandez M C and Cardinaud C, Landesman J P 2013 J. Vac. Sci. Technol. A 31 011301
[18] Bogaerts A 2009 Spectrochim. Acta, Part B 64 126
[19] Sode M, Jacob W, Schwarz-Selinger T and Kersten H 2015 J. Appl. Phys. 117 083303
[20] Adams S F, Miller T A 2000 Plasma Sources Sci. Technol. 9 248
[21] Yagisawa T, Shimada T and Makabe T 2005 J. Vac. Sci. Technol. B 23 2212
[22] Barjasteh A and Eslamia E 2016 Phys. Plasmas 23 033506
[1] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun, Yu-Ru Zhang, Sen Chai, You-Nian Wang, Yan-Yan Chu, Jian-Xin He. Chin. Phys. B, 2020, 29(9): 095203.
[2] Fluid simulation of the pulsed bias effect on inductively coupled nitrogen discharges for low-voltage plasma immersion ion implantation
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Xue-Chun Li(李雪春), You-Nian Wang(王友年). Chin. Phys. B, 2017, 26(1): 015201.
[3] Fluid simulation of inductively coupled Ar/O2 plasmas: Comparisons with experiment
Wang Yan-Hui, Liu Wei, Zhang Yu-Ru, Wang You-Nian. Chin. Phys. B, 2015, 24(9): 095203.
[4] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing, Zhao Shu-Xia, Gao Fei, Zhang Yu-Ru, Li Xue-Chun, Wang You-Nian. Chin. Phys. B, 2015, 24(11): 115201.
[5] Fabrication of high-quality colloidal photonic crystals with sharp band edges for ultrafast all-optical switching
Feng Tian-Hua, Dai Qiao-Feng, Wu Li-Jun, Guo Qi, Hu Wei, Lan Sheng. Chin. Phys. B, 2008, 17(12): 4533-4540.
No Suggested Reading articles found!