Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 098101    DOI: 10.1088/1674-1056/24/9/098101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Improved thermoelectric property of cation-substituted CaMnO3

Pradeep Kumara, Subhash C. Kashyapb, Vijay Kumar Sharmaa, H. C. Guptab
a Department of Physics, Shyam Lal College, University of Delhi, Shahdara, Delhi, India;
b Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
Abstract  Single-phase pristine and cation-substituted calcium manganite (Ca1-xBixMn1-yVyO3-δ ) polycrystalline samples were synthesized by the solid state reaction technique. Their thermoelectric properties were measured by a set up that was designed and assembled in the laboratory. The Ca1-xBixMn1-yVyO3-δ sample with x = y = 0.04 has shown a power factor (S2σ) of 176 μW/m/K2 at 423 K, which is nearly two orders of magnitude higher than that of the pristine sample (2.1 μW/m/K2). The power factor of the substituted oxide remains almost temperature independent as the Seebeck coefficient increases monotonically with temperature, along with the simultaneous decrease in electrical resistivity which is attributed to enhanced electron density due to co-doping of bismuth and vanadium and grain boundary scattering. These cation-substituted calcium manganites can be used as a potential candidate for an n-type leg in a thermoelectric generator (module).
Keywords:  thermoelectric materials      solid state reaction      Seebeck coefficient      power factor  
Received:  18 January 2015      Revised:  28 April 2015      Accepted manuscript online: 
PACS:  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  72.20.Ee (Mobility edges; hopping transport)  
Corresponding Authors:  Pradeep Kumar     E-mail:  sharmapradeep014@gmail.com

Cite this article: 

Pradeep Kumar, Subhash C. Kashyap, Vijay Kumar Sharma, H. C. Gupta Improved thermoelectric property of cation-substituted CaMnO3 2015 Chin. Phys. B 24 098101

[1] Yang J and Stabler F R 2009 J. Electron. Mater. 38 1245.
[2] Kim S K, Won B C, Rhi S H and Yoo C J 2011 J. Electron. Mater. 40 778
[3] Hasiao Y Y, Chang W C and Chen S L 2010 Energy 3 65
[4] Zhang M, Miao L, Kang Y P, Tanemura S, Fisher C A J, Xu G, Li C X and Fan G Z 2013 Appl. Energ. 109 51
[5] Blancetal S L 2014 Renew. Sust. Energ. Rev. 32 313
[6] Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W and Chen L 2011 J. Am. Chem. Soc. 133 7837
[7] Joseph P H, Jovovic V, Toberer E, Saramet A, Kurosaki K, Charoenphakdee A, Yamanaka S and Snyder G J 2008 Science 321 554
[8] Saramat A, Svensson G, Palmqvist A E C, Stiewe C, Mueller E, Platzek D, Williams S G K, Rowe D M, Bryan J D and Stucky G D 2006 J. Appl. Phys. 99 023728
[9] Rhyee J S, Lee K H, Lee S M, Cho E, Kim S L, Lee E, Kwon Y S, Shim J H and Kotliar G 2009 Nature 459 965
[10] Wang H C, Wang C L, Su W B, Liu J, Sun Y, Peng H and Mei L M 2011 J. Am. Ceram. Soc. 94 838
[11] Wang H C, Wang C L, Su W B, Liu J, Zhao Y, Peng H, Zhang J L, Zhao M L, Li J C, Yin N and Mei L M 2010 Mater. Res. Bull. 45 809
[12] Wang Y, Sui Y, Fan H J, Wang X J, Su Y T, Su W H and Liu X Y 2009 Chem. Mater. 21 4653
[13] Ohta S, Ohta H and Koumoto K 2006 J. Ceram. Soc. 114 102
[14] Maignan A, Hebert S, Pi L, Pelloquin D, Martin C, Michel C, Hervieu M and Raveau B 2002 Crystal Engineering 5 365
[15] Park J W, Kwak D H, Yoon S H and Choi S C 2009 J. Alloy. Compd. 487 55
[16] Kosuga A, Isse Y, Wang Y, Koumoto K and Funahashi R 2009 J. Appl. Phys. 105 93717
[17] Ohtaki M, Koga H, Tokunaga T, Eguchi K and Hiromichi A 1995 J. Solid State Chem. 120 105
[18] Shannon R D 1976 Acta Crystallogr. A 32 751
[19] Iwanaga S, Toberer E, Lalonde A and Synder G J 2011 Rev. Sci. Instrum. 82 063905
[20] Goodenough J B 1996 J. Appl. Phys. 37 1415
[21] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[22] Ahamat M A and Tierney M J 2011 Appl. Therm. Eng. 31 1421
[23] Tuller H L and Nowick A S 1977 J. Phys. Chem. Solids 38 859
[24] Karim D P and Aldred A T 1979 Phys. Rev. B 20 2255
[25] Kabir R, Zhang T, Donelson R, Wang D, Tian R, Tan T T, Gong B and Li S 2014 Phys. Status Solidi A 1
[26] Huang X Y, Miyazaki Y and Kajitani T 2008 Solid State Commun. 145 132
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[3] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[4] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[5] Recent advances in organic, inorganic, and hybrid thermoelectric aerogels
Lirong Liang(梁丽荣), Xiaodong Wang(王晓东), Zhuoxin Liu(刘卓鑫), Guoxing Sun(孙国星), and Guangming Chen(陈光明). Chin. Phys. B, 2022, 31(2): 027903.
[6] Synthesis and thermoelectric properties of Bi-doped SnSe thin films
Jun Pang(庞军), Xi Zhang(张析), Limeng Shen(申笠蒙), Jiayin Xu(徐家胤), Ya Nie(聂娅), and Gang Xiang(向钢). Chin. Phys. B, 2021, 30(11): 116302.
[7] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[8] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[9] Enhancement of thermoelectric properties of SrTiO3/LaNb-SrTiO3 composite by different doping levels
Ke-Xian Wang(王柯鲜), Jun Wang(王俊), Yan Li(李艳), Tao Zou(邹涛), Xiao-Huan Wang(王晓欢), Jian-Bo Li(李建波), Zheng Cao(曹正), Wen-Jing Shi(师文静), Xinba Yaer(新巴雅尔). Chin. Phys. B, 2018, 27(4): 048401.
[10] Effect of Nb doping on microstructures and thermoelectric properties of SrTiO3 ceramics
Da-Quan Liu(刘达权), Yu-Wei Zhang(张玉伟), Hui-Jun Kang(康慧君), Jin-Ling Li(李金玲), Xiong Yang(杨雄), Tong-Min Wang(王同敏). Chin. Phys. B, 2018, 27(4): 047205.
[11] Band engineering and precipitation enhance thermoelectric performance of SnTe with Zn-doping
Zhiyu Chen(陈志禹), Ruifeng Wang(王瑞峰), Guoyu Wang(王国玉), Xiaoyuan Zhou(周小元), Zhengshang Wang(王正上), Cong Yin(尹聪), Qing Hu(胡庆), Binqiang Zhou(周斌强), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047202.
[12] Nanoscale thermal transport: Theoretical method and application
Yu-Jia Zeng(曾育佳), Yue-Yang Liu(刘岳阳), Wu-Xing Zhou(周五星), Ke-Qiu Chen(陈克求). Chin. Phys. B, 2018, 27(3): 036304.
[13] Thermal stability and electrical transport properties of Ge/Sn-codoped single crystalline β-Zn4Sb3 prepared by the Sn-flux method
Hong-xia Liu(刘虹霞), Shu-ping Deng(邓书平), De-cong Li(李德聪), Lan-xian Shen(申兰先), Shu-kang Deng(邓书康). Chin. Phys. B, 2017, 26(2): 027401.
[14] Optimize the thermoelectric performance of CdO ceramics by doping Zn
Xin-Yu Zha(查欣雨), Lin-Jie Gao(高琳洁), Hong-Chang Bai(白洪昌), Jiang-Long Wang(王江龙), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2017, 26(10): 107202.
[15] Improved thermoelectric performance in p-type Bi0.48Sb1.52Te3 bulk material by adding MnSb2Se4
Binglei Cao(曹丙垒), Jikang Jian(简基康), Binghui Ge(葛炳辉), Shanming Li(李善明), Hao Wang(王浩), Jiao Liu(刘骄), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2017, 26(1): 017202.
No Suggested Reading articles found!