Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094208    DOI: 10.1088/1674-1056/24/9/094208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments

Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚)
Key Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem andInformation Technology, Chinese Academy of Sciences, Shanghai 200050, China
Abstract  

Terahertz quantum cascade lasers (THz QCLs) emitted at 4.4 THz are fabricated and characterized. An equivalent circuit model is established based on the five-level rate equations to describe their characteristics. In order to illustrate the capability of the model, the steady and dynamic performances of the fabricated THz QCLs are simulated by the model. Compared to the sophisticated numerical methods, the presented model has advantages of fast calculation and good compatibility with circuit simulation for system-level designs and optimizations. The validity of the model is verified by the experimental and numerical results.

Keywords:  terahertz      quantum cascade laser      equivalent circuit model      five-level rate equations  
Received:  09 April 2015      Revised:  12 May 2015      Accepted manuscript online: 
PACS:  42.55.Ah (General laser theory)  
  42.62.-b (Laser applications)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB339803), the National High Technology Research and Development Program of China (Grant No. 2011AA010205), the National Natural Science Foundation of China (Grant Nos. 61131006, 61321492, and 61404149), the Major National Development Project of Scientific Instrument and Equipment, China (Grant No. 2011YQ150021), the National Science and Technology Major Project, China (Grant No. 2011ZX02707), the Major Project, China (Grant No. YYYJ-1123-1), the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciences, and the Shanghai Municipal Commission of Science and Technology, China (Grant Nos. 14530711300).

Corresponding Authors:  Cao Jun-Cheng     E-mail:  jccao@mail.sim.ac.cn

Cite this article: 

Yao Chen (姚辰), Xu Tian-Hong (徐天鸿), Wan Wen-Jian (万文坚), Zhu Yong-Hao (朱永浩), Cao Jun-Cheng (曹俊诚) An equivalent circuit model for terahertz quantumcascade lasers: Modeling and experiments 2015 Chin. Phys. B 24 094208

[1] Williams B S 2007 Nat Photon. 1 517
[2] Koehler R, Tredicucci A, Beltram F, Beere H, Linfield E, Davies A, Ritchie D, Iotti R and Rossi F 2002 Nature 417 156
[3] Indjin D, Harrison P, Kelsall R and Ikonic Z 2001 Appl. Phys. Lett. 91 9091
[4] Lee S and Wacker A 2002 Phys. Rev. B 66 245314
[5] Biswas A and Basu P K 2007 J. Opt. A: Pure Appl. Opt. 9 26
[6] Williams B S, Kumar S, Hu Q and Reno J 2006 Electron. Lett 42 89
[7] Luo H, Laframboise R, Wasilewski Z, Aers G, Liu H C and Cao J 2007 Appl. Phys. Lett. 90 041112
[8] Li H, Cao J C, Han Y J, Guo X G, Tan Z Y, Lv J T, Luo H, Laframboise S R and Liu H C 2008 J. Appl. Phys 104 043101
[9] Lv J T and Cao J C 2006 Appl. Phys. Lett. 88 061119
[10] Lv J T and Cao J C 2006 Appl. Phys. Lett. 89 211115
[11] Li H, Cao J C and Lv J T 2008 J. Appl. Phys 103 103113
[12] Yin R, Wan W J, Zhang Z Z, Tan Z Y and Cao J C 2014 Chin. Phys. B 10 104207
[13] Cao J C, Li H, Han Y J, Tan Z Y, Lv J T, Luo H, Laframboise S and Liu H C 2008 Chin. Phys. Lett. 25 953
[14] Meng B and Wang Q J 2012 Opt. Express 20 1450
[15] Wang F, Guo X G, Wang C and Cao J C 2013 New J. Phys. 15 075009
[1] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[2] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[8] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[9] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[10] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[11] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[14] How to realize an ultrafast electron diffraction experiment with a terahertz pump: A theoretical study
Dan Wang(王丹), Xuan Wang(王瑄), Guoqian Liao(廖国前), Zhe Zhang(张喆), and Yutong Li(李玉同). Chin. Phys. B, 2022, 31(5): 056103.
[15] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
No Suggested Reading articles found!